917 resultados para Bio-responsive drug delivery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. © 2013 The Author(s) Published by the Royal Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in hydrogel materials is growing rapidly, due to the potential for hydrogel use in tissue engineering and drug delivery applications, and as coatings on medical devices. However, a key limitation with the use of hydrogel materials in many applications is their relatively poor mechanical properties compared with those of (less biocompatible) solid polymers. In this review, basic chemistry, microstructure and processing routes for common natural and synthetic hydrogel materials are explored first. Underlying structure-properties relationships for hydrogels are considered. A series of mechanical testing modalities suitable for hydrogel characterisation are next considered, including emerging test modalities, such as nanoindentation and atomic force microscopy (AFM) indentation. As the data analysis depends in part on the material's constitutive behaviour, a series of increasingly complex constitutive models will be examined, including elastic, viscoelastic and theories that explicitly treat the multiphasic poroelastic nature of hydrogel materials. Results from the existing literature on agar and polyacrylamide mechanical properties are compiled and compared, highlighting the challenges and uncertainties inherent in the process of gel mechanical characterisation. © 2014 Institute of Materials, Minerals and Mining and ASM International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2014 AIP Publishing LLC. Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2and pure Fe2O3particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

磁靶向给药体系能有效减小化疗药物的毒副作用,提高药效,减少用药量,为癌症肿瘤的靶向治疗提供了一个新的途径。磁性靶向抗癌药物体系主要由纳米级磁性材料、骨架材料、化疗药物组成。其结构可以分为包埋型和偶联型:前者是将药物和磁性纳米材料包埋、分散在高分子基质中;后者是将药物通过某种作用力偶联在磁性高分子微球的表面。尽管磁靶向药物的研究已经取得了很大的进展,但是目前还存在着诸如药物载体的生物相容性、靶向功能单一和药物释放缺乏控制等一系列的问题,并且主要集中在包埋型的制备和研究,药物在输送到病灶的过程中会产生一系列的副反应,在将来的临床应用中受到很大的限制。而偶联型磁靶向给药体系的药物释放既可以达到空间控制的效果,也可以起到一定的时间控制的作用。磁性纳米材料不仅是磁靶向给药体系制备的基础,并且在细胞分离,固定化酶,核酸杂交等生物领域和磁记录、吸波材料等方面有广泛的应用。本论文以此为立题依据,共分为七个部分。第一至第四部分以共沉淀法制备的具有超顺磁性的Fe3O4纳米粒子为磁核,选择能生物降解且无毒的无机材料二氧化硅、天然高分子壳聚糖和人工合成的高分子聚乳酸为包覆材料,常用的抗癌药阿霉素、甲氨喋呤为模型药物,制备了三个偶联型磁靶向给药体系,对其体外药物释放行为及磁学性质进行了测定;第五部分结合生物医药对Fe3O4纳米粒子的应用要求,提出了一种简单制备粒径可控的单分散性的亲油/亲水性Fe3O4纳米粒子的新方法, 同时还探讨了亲油/亲水性Fe3O4纳米粒子的可能形成过程;第六部分将阿霉素以酰胺键接枝在可降解高分子材料P3HB4HB上,将得到的P3HBP4HB-DOX偶联物和第五部分所制备的亲油性Fe3O4纳米粒子共混于氯仿中进行静电纺丝,成功地制备了载有DOX的磁性纤维,改变了以往磁靶向给药体系的单一微球形貌;第七部分以EDTA和FeCl2为原料,采用水热法制备了十二面体四氧化三铁纳米粒子,探讨了EDTA和FeCl2的摩尔比、反应温度、反应时间和反应介质对产物形貌的影响,并提出了这一新颖形貌的可能形成机理。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic wetting and electrowetting are explored using molecular dynamics simulations. The propagation of the precursor film (PF) is fast and obeys the power law with respect to time. Against the former studies, we find the PF is no slip and solidlike. As an important application of the PF, the electro-elasto-capillarity, which is a good candidate for drug delivery at the micro- or nanoscale, is simulated and realized for the first time. Our findings may be one of the answers to the Huh-Scriven paradox and expand our knowledge of dynamic wetting and electrowetting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<正>Elasto-capillarity has drawn much of scientists' attention in the past several years.By inducing electric field into the droplet,the encapsulation and release procedure can be realized and we call it electro-elasto-capillarity(EEC).EEC offers a novel method for micro-scale actuation and self-assemble of moveable devices.It also provides a good candidate for the drug delivery at micro- or nanoscale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swelling behaviour is one of the important properties for microcapsules made by hydrogels, which always affects the diffusion and release of drugs when the microcapsules are applied in drug delivery systems. In this paper, alginate-chitosan microcapsules were prepared by different technologies called external or internal gelation process respectively. With the volume swelling degree (S-w) as an index, the effect of properties of chitosan on the swelling behaviour of both microcapsules was investigated. It was demonstrated that the microcapsules with low molecular weight and high concentration of chitosan gave rise to low S-w. Considering the need of maintaining drug activity and drug loading, neutral pH and short gelation time were favorable. It was also noticed that S-w of internal gelation microcapsules was lower than that of external gelation microcapsules, which was interpreted by the structure analysis of internal or external gelation Ca-alginate beads with the aid of confocal laser scanning microscope. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the objective of making calcium alginate gel beads with small and uniform size, membrane emulsification coupled with internal gelation was proposed. Spherical gel beads with mean size of about 50 mum, and even smaller ones in water, and with narrow size distribution were successfully obtained. Experimental studies focusing mainly on the effect of process parameters on bead properties were performed. The size of the beads was mainly dependent on the diameter of the membrane pores. High transmembrane pressure made for large gel beads with wide size distribution. Low sodium alginate concentration produced nonspherical beads, whereas a high concentration was unsuitable for the production of small beads with narrow distribution. Thus 1.5% w/v was enough. A high surfactant concentration favored the formation of small beads, but the adverse effect on mass transfer should be considered in this novel process. (C) 2002 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We synthesized methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) (mPEGGA) diblock copolymer by ring-opening polymerization of N-carboxy anhydride of gamma-benzyl-L-glutamate (NCA) using amino-terminated methoxy polyethylene glycol (mPEG) as macroinitiator. Polyelectrolyte complexation between mPEGGA as neutral-block-polyanion and chitosan (CS) as polycation has been scrutinized in aqueous solution as well as in the solid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA was efficiently bound to water-soluble positively charged CdTe quantum dots (QDs) through complementary electrostatic interaction. These QDs-DNA complexes were disrupted and DNA was released by glutathione (GSH) at intracellular concentrations. Interestingly, there was almost no detectable DNA released by extracellular concentration of GSH. The formation of QDs-DNA complexes and GSH-mediated DNA release from the complexes were confirmed by dye displacement assay, electrophoretic mobility shift assay (EMSA), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the self-assembly of the ABA triblock copolymer (P4VP-b-PS-b-P4VP) in dilute solution by using binary block-selective solvents, that is, water and methanol. The triblock copolymer was first dissolved in dioxane to form a homogeneous solution. Subsequently, a given volume of selective solvent was added slowly to the solution to induce self-assembly of the copolymer. It was found that the copolymer (P4VP(43)-b-PS366-b-P4VP(43)) tended to form spherical aggregate or bilayer structure when we used methanol or water as the single selective solvent, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new biodegradable amphiphilic block copolymer, poly(ethylene glycol)-b-poly(L-factide-co-9-phenyl-2,4,8, 10-tetraoxaspiro[5,5]undecan-3-one) [PEG-b-P(LA-co-PTO)], was successfully prepared by ring-opening polymerization (ROP) Of L-lactide (LA) and functionalized carbonate monomer 9-phenyl-2,4,8,10-tetraozaspiro[5,5]undecan-3-one (PTO) in the presence of monohydroxyl poly(ethylene glycol) as macroinitiator using Sn(Oct)(2) as catalyst. NMR, FT-IR, and GPC studies confirmed the copolymer structure.