875 resultados para Binary Classification
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques
Resumo:
A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach
Strategies of psychological terrorism perpetrated by ETA's network : Delimitation and classification
Resumo:
Resumen tomado de la publicaci??n
Resumo:
A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours
Resumo:
Short video on laser classification produced by the National Physical Laboratory
Resumo:
This article analyzes the juridical controversy related to whether a person that providesservices to a company in which is partner, can be qualified or considered as adependent employee of it. In order to accomplish that purpose, the article providesa critical study of the doctrine of the Chilean Department of Labor (Dirección deTrabajo) in contrast to the jurisprudence of the Chilean courts of justice. From there,the author develops criteria that can serve as guidance towards the resolution of disputesof this nature. To this end, an interdisciplinary study is done, which combinesboth the essential elements of the contract of employment, mainly the element ofalienation, with the characteristics of each type of company.
Resumo:
Aquesta memòria està estructurada en sis capítols amb l'objectiu final de fonamentar i desenvolupar les eines matemàtiques necessàries per a la classificació de conjunts de subconjunts borrosos. El nucli teòric del treball el formen els capítols 3, 4 i 5; els dos primers són dos capítols de caire més general, i l'últim és una aplicació dels anteriors a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. En el capítol 1 s'analitzen les diferents connectives borroses posant una especial atenció en aquells aspectes que en altres capítols tindran una aplicació específica. És per aquest motiu que s'estudien les ordenacions de famílies de t-normes, donada la seva importància en la transitivitat de les relacions borroses. La verificació del principi del terç exclòs és necessària per assegurar que un conjunt significatiu de mesures borroses generalitzades, introduïdes en el capítol 3, siguin reflexives. Estudiem per a quines t-normes es verifica aquesta propietat i introduïm un nou conjunt de t-normes que verifiquen aquest principi. En el capítol 2 es fa un recorregut general per les relacions borroses centrant-nos en l'estudi de la clausura transitiva per a qualsevol t-norma, el càlcul de la qual és en molts casos fonamental per portar a terme el procés de classificació. Al final del capítol s'exposa un procediment pràctic per al càlcul d'una relació borrosa amb l'ajuda d'experts i de sèries estadístiques. El capítol 3 és un monogràfic sobre mesures borroses. El primer objectiu és relacionar les mesures (o distàncies) usualment utilitzades en les aplicacions borroses amb les mesures conjuntistes crisp. Es tracta d'un enfocament diferent del tradicional enfocament geomètric. El principal resultat és la introducció d'una família parametritzada de mesures que verifiquen unes propietats de caràcter conjuntista prou satisfactòries. L'estudi de la verificació del principi del terç exclòs té aquí la seva aplicació sobre la reflexivitat d'aquestes mesures, que són estudiades amb una certa profunditat en alguns casos particulars. El capítol 4 és, d'entrada, un repàs dels principals resultats i mètodes borrosos per a la classificació dels elements d'un mateix conjunt de subconjunts borrosos. És aquí on s'apliquen els resultats sobre les ordenacions de les famílies de t-normes i t-conormes estudiades en el capítol 1. S'introdueix un nou mètode de clusterització, canviant la matriu de la relació borrosa cada vegada que s'obté un nou clúster. Aquest mètode permet homogeneïtzar la metodologia del càlcul de la relació borrosa amb el mètode de clusterització. El capítol 5 tracta sobre l'agrupació d'objectes de diferent naturalesa; és a dir, subconjunts borrosos que pertanyen a diferents conjunts. Aquesta teoria ja ha estat desenvolupada en el cas binari; aquí, el que es presenta és la seva generalització al cas n-ari. Més endavant s'estudien certs aspectes de les projeccions de la relació sobre un cert espai i el recíproc, l'estudi de cilindres de relacions predeterminades. Una aplicació sobre l'agrupació de les comarques gironines en funció de certes variables borroses es presenta al final del capítol. L'últim capítol és eminentment pràctic, ja que s'aplica allò estudiat principalment en els capítols 3 i 4 a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. Per tal de fer previsions per a anys venidors s'han utilitzat sèries temporals i xarxes neuronals. S'han emprat diverses mesures i mètodes de clusterització per tal de poder comparar els diversos dendogrames que resulten del procés de clusterització. Finalment, als annexos es poden consultar les sèries estadístiques utilitzades, la seva extrapolació, els càlculs per a la construcció de les matrius de les relacions borroses, les matrius de mesura i les seves clausures.
Resumo:
L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.