846 resultados para Bills of exchange.
Resumo:
Data derived from a series of field and laboratory studies of the influence of albedo and thermal conductivity on stone temperatures are reported. They indicate the complexity of surface/subsurface temperature response characteristics of different stone types exposed to the same conditions and highlight the influence of albedo and thermal conductivity on micro-environmental conditions at the rock/air interface – conditions which have significant implications for the nature and rate of weathering activity and which may, over time, affect any surface treatments applied to stone surfaces. Although the studies reviewed were carried out within the subject area of geomorphology, the data reported and the implications for stone weathering arising from them, may be of some relevance to the conservation science perspective on deterioration of contemporary, historical and archaeological stonework.
Resumo:
Antimony doped tin oxide (ATO) was studied as a support material for IrO2 in proton exchange membrane water electrolyser (PEMWE). Adams fusion method was used to prepare the IrO2-ATO catalysts. The physical and electrochemical characterisation of the catalysts were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder conductivity, cyclic voltammetry (CV) and membrane electrode assembly (MEA) polarisation. The BET surface area and electronic conductivity of the supported catalysts were found to be predominantly arisen from the IrO2. Supported catalyst showed higher active surface area than the pristine IrO2 in CV analysis with 85% H3PO4 as electrolyte. The MEA performance using Nafion®−115 membrane at 80 °C and atmospheric pressure showed a better performance for IrO2 loading ≥60 wt.% than the pristine IrO2 with a normalised current density of 1625 mA cm−2 @1.8 V for the 60% IrO2-ATO compared to 1341 mA cm−2 for the pristine IrO2 under the same condition. The higher performance of the supported catalysts was mainly attributed to better dispersion of active IrO2 on electrochemically inactive ATO support material, forming smaller IrO2 crystallites. A 40 wt.% reduction in the IrO2 was achieved by utilising the support material.
Resumo:
The air-sea exchange of two legacy persistent organic pollutants (POPs), γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization), wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009). The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2–3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.
Resumo:
Indium tin oxide (ITO) was used as a support for IrO2 catalyst in the oxygen evolution reaction. IrO2 nanoparticles were deposited in various loading on commercially available ITO nanoparticle, 17–28 nm in size using the Adam's fusion method. The prepared catalysts were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The BET surface area of the support (35 m2/g) was 3 times lower than the unsupported IrO2 (112.7 m2/g). The surface area and electronic conductivity of the catalysts were predominantly contributed by the IrO2. The supported catalysts were tested in a membrane electrode assembly (MEA) for electrolyser operation. The 90% IrO2-ITO gave similar performance (1.74 V@1 A/cm2) to that of the unsupported IrO2 (1.73 V@1 A/cm2) in the MEA polarisation test at 80 °C with Nafion 115 membrane which was attributed to a better dispersion of the active IrO2 on the electrochemically inactive ITO support, giving rise to smaller catalyst particle and thereby higher surface area. Large IrO2 particles on the support significantly reduced the electrode performance. A comparison of TiO2 and ITO as support material showed that, 60% IrO2 loading was able to cover the support surface and giving sufficient conductivity to the catalyst.
Resumo:
Abstract Image
Herein a new double O-directed free radical hydrostannation reaction is reported on the structurally complex dialkyldiyne 11. Through our use of a conformation-restraining acetal to help prevent stereocenter-compromising 1,5-H-atom abstraction reactions by vinyl radical intermediates, the two vinylstannanes of 10 were concurrently constructed with high stereocontrol using Ph3SnH/Et3B/O2. Distannane 10 was thereafter elaborated into the bis-vinyl iodide 9 via O-silylation and double I–Sn exchange; double Stille coupling of 9, O-desilylation, and oxidation thereafter furnished 8.
Outperformance in exchange-traded fund pricing deviations: Generalized control of data snooping bias
Resumo:
An investigation into exchange-traded fund (ETF) outperforrnance during the period 2008-2012 is undertaken utilizing a data set of 288 U.S. traded securities. ETFs are tested for net asset value (NAV) premium, underlying index and market benchmark outperformance, with Sharpe, Treynor, and Sortino ratios employed as risk-adjusted performance measures. A key contribution is the application of an innovative generalized stepdown procedure in controlling for data snooping bias. We find that a large proportion of optimized replication and debt asset class ETFs display risk-adjusted premiums with energy and precious metals focused funds outperforming the S&P 500 market benchmark.Â
Resumo:
Regions of Restricted Exchange (RREs) are an important feature of the European coastline. They are historically preferred sites for human settlement and aquaculture and their ecosystems, and consequent human use, may be at risk from eutrophication. The OAERRE project (EVK3-CT1999-0002 concerns ‘Oceanographic Applications to Eutrophication in Regions of Restricted Exchange’. It began in July 2000, and studies six sites. Four of these sites are fjords: Kongsfjorden (west coast of Spitzbergen); Gullmaren (Skagerrak coast of Sweden); Himmerfj.arden (Baltic coast of Sweden); and the Firth of Clyde (west coast of Scotland). Two are bays sheltered by sand bars: Golfe de Fos (French Mediterranean); and Ria Formosa (Portuguese Algarve). Together they exemplify a range of hydrographic and enrichment conditions. The project aims to understand the physical, biogeochemical and biological processes, and their interactions, that determine the trophic status of these coastal marine RRE through the development of simple screening models to define, predict and assess eutrophication. This paper introduces the sites and describes the component parts of a basic screening model and its application to each site using historical data. The model forms the starting point for the OAERRE project and views an RRE as a well-mixed box, exchanging with the sea at a daily rate E determined by physical processes, and converting nutrient to phytoplankton chlorophyll at a fixed yield q: It thus uses nutrient levels to estimate maximum biomass; these preliminary results are discussed in relation to objective criteria used to assess trophic status. The influence of factors such as grazing and vertical mixing on key parameters in the screening model are further studied using simulations of a complex‘research’ model for the Firth of Clyde. The future development of screening models in general and within OAERRE in particular is discussed. In addition, the paper looks ahead with a broad discussion of progress in the scientific understanding of eutrophication and the legal and socioeconomic issues that need to be taken into account in managing the trophic status of RREs.