921 resultados para Berry phase effect
Resumo:
The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4-0.45), plunger rate (5-20 mm/min), and tapering the barrel exit (45°-90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.
Resumo:
AIM: In view of the increased rates of pre-eclampsia observed in diabetic pregnancy and the lack of ex vivo data on placental biomarkers of oxidative stress in T1 diabetic pregnancy, the aim of the current investigation was to examine placental antioxidant enzyme status and lipid peroxidation in pregnant women with type 1 diabetes. A further objective of the study was to investigate the putative impact of vitamin C and E supplementation on antioxidant enzyme activity and lipid peroxidation in type 1 diabetic placentae.
METHODS: The current study measured levels of antioxidant enzyme [glutathione peroxidase (Gpx), glutathione reductase (Gred), superoxide dismutase (SOD) and catalase] activity and degree of lipid peroxidation (aqueous phase hydroperoxides and 8-iso-prostaglandin F2α) in matched central and peripheral samples from placentae of DAPIT (n=57) participants. Levels of vitamin C and E were assessed in placentae and cord blood.
RESULTS: Peripheral placentae demonstrated significant increases in Gpx and Gred activities in pre-eclamptic in comparison to non-pre-eclamptic women. Vitamin C and E supplementation had no significant effect on cord blood or placental levels of these vitamins, nor on placental antioxidant enzyme activity or degree of lipid peroxidation in comparison to placebo-supplementation.
CONCLUSION: The finding that maternal supplementation with vitamin C/E does not augment cord or placental levels of these vitamins is likely to explain the lack of effect of such supplementation on placental indices including antioxidant enzymes or markers of lipid peroxidation.
Resumo:
The investigation is focused on the wear behaviour at elevated test temperature of composite Ni–P/SiC deposit, with varying concentration of the reinforcing SiC particles. The phase evolution measured by X-ray diffraction suggests slight crystallisation during wear testing at 200 °C. In coating without reinforcing particles, adhesive wear is accompanied by microcracks. The thermal heat generated and the cyclic loading could have induced sub-surface microcracks. Owing to the effective matrix-ceramics system in composite coatings, fine grooves, abrasive polishing and uniform wearing are observed. Reinforcing particles in the matrix hinder microcrack formation and significantly reduce the wear rate. Triboxidation is confirmed from energy dispersive X-ray spectrometry.
Resumo:
In co-melt granulation, collisions occur between the particles to be agglomerated and the binder material. Depending on the stage of granulation, the binder material can be in the solid or liquid phase. The outcome of these collisions controls the dynamics of the granulation process and the fundamental physics of the impacts are of interest. This paper examines the impact of glass beads (model particles) and solid Poly Ethylene Glycol (PEG) flakes on a substrate of PEG as the temperature of the PEG layer is increased from below its melting point to above it. While the layer is in the solid state, the result of the impact can be quantified by the coefficient of restitution. When the layer is in the liquid state, the impact can be quantified by the immersion behaviour. The results obtained show that the coefficient of restitution between either glass beads and PEG flakes and the PEG layer is strongly affected by temperatures. As the PEG layer approaches its melting point, the coefficient of restitution falls to zero. Once the temperature of the PEG layer exceeds the melting point, the impact is characterised by a transient maximum indentation and then rebound to an equilibrium position. These too are strongly dependent on temperature.
Resumo:
OBJECTIVES: There is previous epidemiological evidence that intake of polyphenol-rich foods has been associated with reduced cardiovascular disease risk. We aimed to investigate the effect of increasing dietary polyphenol intake on microvascular function in hypertensive participants.
METHODS: All participants completed a 4-week run-in phase, consuming <2 portions of fruit and vegetables (F&V) daily and avoiding berries and dark chocolate. Subjects were then randomised to continue with the low-polyphenol diet for 8 weeks or to consume a high-polyphenol diet of six portions F&V (including one portion of berries/day and 50 g of dark chocolate). Endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside) vasodilator responses were assessed by venous occlusion plethysmography. Compliance with the intervention was measured using food diaries and biochemical markers.
RESULTS: Final analysis of the primary endpoint was conducted on 92 participants. Between-group comparison of change in maximum % response to ACh revealed a significant improvement in the high-polyphenol group (p=0.02). There was a significantly larger increase in vitamin C, carotenoids and epicatechin in the high-polyphenol group (between-group difference p<0.001; p<0.001; p=0.008, respectively).
CONCLUSIONS: This study has shown that increasing the polyphenol content of the diet via consumption of F&V, berries and dark chocolate results in a significant improvement in an established marker of cardiovascular risk in hypertensive participants.
Resumo:
Effect of storage on physical-chemical properties and phenolics of sweet cherry from São Julião region. A.C. Agulheiro-Santos1, F. Vieira1, D. Gonzalez2, M. Lozano2, V. Palma1, A.E. Rato1 1Universidade de Évora. Instituto de Ciências Agrárias e Ambientais Mediterrânica (ICAAM). 7000 Évora, Portugal. 2Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX). Ctra. San Vicente. Finca Santa Engracia. 06071 Badajoz, Spain. Worldwide the consumption of fruit and vegetables is increasing due to the dietary guidelines recommended by nutritionist. Because of their high content on phenols, vitamins, mineral and antioxidants, berry fruits are consumed not only in fresh forms but also as processed and derivative products such as juices, yogurts, jellies and dried fruits. As a high consumed red fruit, sweet cherry has been the focus on some studies, mainly regarding bioactive compounds content. “Sweetheart” cherries from São Julião region (Alentejo, Portugal) from two different production campaigns were kept in different storage conditions in order to evaluate both the environmental and storage effect on some physical-chemical properties and phenolics. Cold conditions - Cold (1 ºC, 95% RH) and modified atmosphere - MA (1 ºC, 95% RH with micro-perforated bags of Pplus®, Sidlaw Packaging, Bristol, UK) were tested. In order to establish the appropriate storage conditions, individual phenolic acids and physical-chemical properties were analysed during two consecutive years. Results show a general decrease on phenolic compounds content between cherries from both years. It is also observed that MA conditions do not affect significantly both phenolics and physical-chemical parameters when compared with Cold conditions. Additionally, it is observed similar behaviour on Cold and MA sweet cherries regarding its pH, total soluble solids content (TSS), titratable acidity (TA) and colour and individual phenols during storage time. Concluding, these results show, as expected, changes between cultivars which may be correlated with the environmental conditions on different years. Keywords: sweet cherry, postharvest, phenols, physical-chemical, storage conditions.
Resumo:
Communication and cooperation between billions of neurons underlie the power of the brain. How do complex functions of the brain arise from its cellular constituents? How do groups of neurons self-organize into patterns of activity? These are crucial questions in neuroscience. In order to answer them, it is necessary to have solid theoretical understanding of how single neurons communicate at the microscopic level, and how cooperative activity emerges. In this thesis we aim to understand how complex collective phenomena can arise in a simple model of neuronal networks. We use a model with balanced excitation and inhibition and complex network architecture, and we develop analytical and numerical methods for describing its neuronal dynamics. We study how interaction between neurons generates various collective phenomena, such as spontaneous appearance of network oscillations and seizures, and early warnings of these transitions in neuronal networks. Within our model, we show that phase transitions separate various dynamical regimes, and we investigate the corresponding bifurcations and critical phenomena. It permits us to suggest a qualitative explanation of the Berger effect, and to investigate phenomena such as avalanches, band-pass filter, and stochastic resonance. The role of modular structure in the detection of weak signals is also discussed. Moreover, we find nonlinear excitations that can describe paroxysmal spikes observed in electroencephalograms from epileptic brains. It allows us to propose a method to predict epileptic seizures. Memory and learning are key functions of the brain. There are evidences that these processes result from dynamical changes in the structure of the brain. At the microscopic level, synaptic connections are plastic and are modified according to the dynamics of neurons. Thus, we generalize our cortical model to take into account synaptic plasticity and we show that the repertoire of dynamical regimes becomes richer. In particular, we find mixed-mode oscillations and a chaotic regime in neuronal network dynamics.
Resumo:
The cell cycle comprise the four phases of, G1, S-phase, G2 and mitosis. Two critical transitions are G1/S and G2/M; the latter is regulated by WEE1 kinase and CDC25 phosphatases. The scope of this thesis was to investigate the regulation of the G2/M transition of the cell cycle by WEE1 and CDC25, and how these genes interface with plant growth regulators in Arabidopsis thaliana. In Arabidopsis roots, the frequency of lateral roots was found to be increased by ectopic expression of Schizosaccharomyces pombe (Sp)cdc25e and reduced by Arath;WEE1 expression. I examined the effect of Arath;WEE1 and Spcdc25 on induction of shoots and roots in Arabidopsis hypocotyls in vitro. Hypocotyl explants from two over-expressing WEE1 lines , three T-DNA insertion lines and two expressing cdc25 (Spcdc25e) lines together with wild type (WT) were cultured on two-way gradients of kinetin (Kin) and naphthyl acetic acid (NAA). Below a threshold concentration of NAA (100 ng ml-1), WEE1 repressed morphogenesis in vitro, whereas at all NAA/Kin combinations Spcdc25 promoted morphogenesis (particularly root formation) over and above that in WT. Loss of function wee1-1 cultures were very similar to WT. Quantitative data indicated a significant increase in the frequency of root formation in Spcdc25e cultures compared with WT particularly at low Kin concentrations, and WEE1oe’s repressive effect was overcome by NAA but not Kin. In conclusion, WEE1 has a repressive effect on morphogenesis in vitro that can be overcome by auxin whereas Spcd25 by-passes a cytokinin requirement for the induction of morphogenesis in vitro. The role of CDC25 and WEE1 in DNA damage responses was also analysed. Two over-expressing Arath;CDC25 lines and T-DNA mutants showed no difference to WT either in standard conditions or zeocin-supplemented treatments. However, root length was longer in Arath;CDC25oe lines treated with hydroxyurea (HU) and lateral root number was increased compared to WT. This suggests a differential response of Arath;CDC25oe in the DNA replication (HU-induced) and DNA damage (zeocin-induced) checkpoints (Chapter 5). Finally the roles of WEE1 and CDC25 in cell cycle regulation were examined using tobacco TBY-2 cell cultures expressing Arath;WEE1, Nicotiana tabacum (Nicta)WEE1 or Arath;CDC25. Whilst Nicta;WEE1 lengthened G2 of the cell cycle, Arath;WEE1 had an unusual effect of shortening G2 phase and Arath;CDC25 had no observable effect (Chapter 6).
Resumo:
Taking advantage of homeostatic mechanisms to boost tumor-specific cellular immunity is raising increasing interest in the development of therapeutic strategies in the treatment of melanoma. Here, we have explored the potential of combining homeostatic proliferation, after transient immunosuppression, and antigenic stimulation of Melan-A/Mart-1 specific CD8 T-cells. In an effort to develop protocols that could be readily applicable to the clinic, we have designed a phase I clinical trial, involving lymphodepleting chemotherapy with Busulfan and Fludarabine, reinfusion of Melan-A specific CD8 T-cell containing peripheral blood mononuclear cells (exempt of growth factors), and Melan-A peptide vaccination. Six patients with advanced melanoma were enrolled in this outpatient regimen that demonstrated good feasibility combined with low toxicity. Consistent depletion of lymphocytes with persistent increased CD4/CD8 ratios was induced, although the proportion of circulating CD4 regulatory T-cells remained mostly unchanged. The study of the immune reconstitution period showed a steady recovery of whole T-cell numbers overtime. However, expansion of Melan-A specific CD8 T-cells, as measured in peripheral blood, was mostly inconsistent, accompanied with marginal phenotypic changes, despite vaccination with Melan-A/Mart-1 peptide. On the clinical level, 1 patient presented a partial but objective antitumor response following the beginning of the protocol, even though a direct effect of Busulfan/Fludarabine cannot be completely ruled out. Overall, these data provide further ground for the development of immunotherapeutic approaches to be both effective against melanoma and applicable in clinic.
Resumo:
The purpose of the study was to investigate the effect of skate blade radius of hollow (ROH) on anaerobic performance, specifically during the acceleration and stopping phases of an on-ice skating test. Fifteen, male Junior B hockey players (mean age 19 y ± 1.46) were recruited to participate. On-icc testing required each participant to complete an on-ice anaerobic performance test [Reed Repeat Skate (RRS)) on three separate days. During each on-ice test, the participant's skate blades were sharpened to one of three, randomly assigned, ROH values (0.63 cm, 1.27 cm, 1.90 cm). Performance times were recorded during each RRS and used to calculate anaerobic variables [anaerobic power (W), anaerobic capacity (W), and fatigue index (s, %)). Each RRS was video recorded for the purpose of motion analysis. Video footage was imported into Peak Motus™ to measure kinematic variables of the acceleration and stopping phases. The specific variables calculated from the acceleration phase were: average velocity over 6 m (m/s), average stride length (m), and mean stride rate (strides/s). The specific variables calculated from the stopping phase were: velocity at initiation of stopping (rn/s), stopping distance (m), stopping time (s). A repeated measures ANOV A was used to assess differences in mean performance and kinematic variables across the three selected hollows. Further analysis was conducted to assess differences in trial by trial performance and kinematic variables for all hollows. The primary findings of the study suggested that skate blade ROH can have a significant effect on kinematic variables, namely stride length and stride rate during the acceleration phase and stopping distance and stopping time during the stopping phase of an on-ice anaerobic performance test. During the acceleration phase, no significant difdifferences were found in SR and SL across the three selected hollows. Mean SR on the 1.27 cm hollow was significantly slower than both the 0.63 cm and 1.90 cm hollows and SL was significantly longer when skating on the 1.27 cm hollow in comparison to the 1.90 cm hollow. During the stopping phase, stopping distance on the 0.63 cm hollow (4.12 m ± 0.14) was significantly shorter than both the 1.27 cm hollow (4.43 m ± 0.08) (p < 0.05) and the 1.90 cm ho])ow (4.35 m ± 0.12) (p < 0.05). Mean ST was also significantly shorter when stopping on the 0.63 cm hollow then both the 1.27 cm and 1.90 cm hollows. Trial by trial results clearly illustrated the affect of fatigue on kinematic variables; AV, SR, IV decreased from trial 1 to 6. There was no significant effect on anaerobic performance variables during the RRS. Altering the skate blade ROH has a significant and practical affect on accelerating and stopping performance will be discussed in this paper.
Resumo:
Factors affecting the detennination of PAHs by capillary GC/MS were studied. The effect of the initial column temperature and the injection solvent on the peak areas and heights of sixteen PAHs, considered as priority pollutants, USillg crosslinked methyl silicone (DB!) and 5% diphenyl, 94% dimethyl, 1% vinyl polysiloxane (DBS) columns was examined. The possibility of using high boiling point alcohols especially butanol, pentanol, cyclopentanol, and hexanol as injection solvents was investigated. Studies were carried out to optimize the initial column temperature for each of the alcohols. It was found that the optimum initial column temperature is dependent on the solvent employed. The peak areas and heights of the PAHs are enhanced when the initial column temperature is 10-20 c above the boiling point of the solvent using DB5 column, and the same or 10 C above the boiling point of the solvent using DB1 column. Comparing the peak signals of the PAHs using the alcohols, p-xylene, n-octane, and nonane as injection solvents, hexanol gave the greatest peak areas and heights of the PAHs particularly the late-eluted peaks. The detection limits were at low pg levels, ranging from 6.0 pg for fluorene t9 83.6 pg for benzo(a)pyrene. The effect of the initial column temperature on the peak shape and the separation efficiency of the PARs was also studied using DB1 and DB5 columns. Fronting or splitting of the peaks was obseIVed at very low initial column temperature. When high initial column temperature was used, tailing of the peaks appeared. Great difference between DB! and.DB5 columns in the range of the initial column temperature in which symmetrical.peaks of PAHs can be obtained is observed. Wider ranges were shown using DB5 column. Resolution of the closely-eluted PAHs was also affected by the initial column temperature depending on the stationary phase employed. In the case of DB5, only the earlyeluted PAHs were affected; whereas, with DB1, all PAHs were affected. An analytical procedure utilizing solid phase extraction with bonded phase silica (C8) cartridges combined with GC/MS was developed to analyze PAHs in water as an alternative method to those based on the extraction with organic solvent. This simple procedure involved passing a 50 ml of spiked water sample through C8 bonded phase silica cartridges at 10 ml/min, dried by passing a gentle flow of nitrogen at 20 ml/min for 30 sec, and eluting the trapped PAHs with 500 Jll of p-xylene at 0.3 ml/min. The recoveries of PAHs were greater than 80%, with less than 10% relative standard deviations of nine determinations. No major contaminants were present that could interfere with the recognition of PAHs. It was also found that these bonded phase silica cartridges can be re-used for the extraction of PAHs from water.
Resumo:
The present study examined individual differences in Absorption and fantasy, as well as in Achiievement and achievement striving as possible moderators of the perceptual closure effect found by Snodgrass and Feenan (1990). The study also examined whether different instructions (experiential versus instrumental) interact with the personality variables to moderate the relationship between priming and subsequent performance on a picture completion task. 1 28 participants completed two sessions, one to fill out the MPQ and NEO personality inventories and the other to complete the experimental task. The experimental task consisted of a priming phase and a test phase, with pictures presented on a computer screen for both phases. Participants were shown 30 pictures in the priming phase, and then shovm the 30 primed pictures along with 30 new pictures for the test phase. Participants were randomly assigned to receive one of the two different instruction sets for the task. Two measures of performance were calculated, most fragmented measure and threshold. Results of the present study confirm that a five-second exposure time is long enough to produce the perceptual closure effect. The analysis of the two-way interaction effects indicated a significant quadratic interaction of Absorption with priming level on threshold performance. The results were in the opposite direction of predictions. Possible explanations for the Absorption results include lack of optimal conditions, lack of intrinsic motivation and measurement problems. Primary analyses also revealed two significant between-subject effects of fantasy and achievement striving on performance collapsed across priming levels. These results suggest that fantasy has a beneficial effect on performance at test for pictures primed at all levels, whereas achievement striving seems to have an adverse effect on performance at test for pictures primed at all levels. Results of the secondary analyses with a revised threshold performance measure indicated a significant quadratic interaction of Absorption, condition and priming level. In the experiential condition, test performance, based on Absorption scores for pictures primed at level 4, showed a positive slope and performance for pictures primed at levels 1 and 7 based on Absorption showed a negative slope. The reverse effect was found in the instrumental condition. The results suggest that Absorption, in combination with experiential involvement, may affect implicit memory. A second significant result of the secondary analyses was a linear three-way interaction of Achievement, condition and priming level on performance. Results suggest that as Achievement scores increased, test performance improved for less fragmented primed pictures in the instrumental condition and test performance improved for more highly fragmented primes in the experiential condition. Results from the secondary analyses suggest that the revised threshold measure may be more sensitive to individual differences. Results of the exploratory analyses with Openness to Experience, Conscientiousness and agentic positive emotionality (PEM-A) measures indicated no significant effects of any of these personality variables. Results suggest that facets of the scales may be more useful with regard to perceptual research, and that future research should examine narrowly focused personality traits as opposed to broader constructs.
Resumo:
Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.
Resumo:
The enigmatic heavy fermion URu2Si2, which is the subject of this thesis, has attracted intensive theoretical and experimental research since 1984 when it was firstly reported by Schlabitz et al. at a conference [1]. The previous bulk property measurements clearly showed that one second order phase transition occurs at the Hidden Order temperature THO ≈ 17.5 K and another second order phase transition, the superconducting transition, occurs at Tc ≈ 1 K. Though twenty eight years have passed, the mechanisms behind these two phase transitions are still not clear to researchers. Perfect crystals do not exist. Different kinds of crystal defects can have considerable effects on the crystalline properties. Some of these defects can be eliminated, and hence the crystalline quality improved, by annealing. Previous publications showed that some bulk properties of URu2Si2 exhibited significant differences between as-grown samples and annealed samples. The present study shows that the annealing of URu2Si2 has some considerable effects on the resistivity and the DC magnetization. The effects of annealing on the resistivity are characterized by examining how the Residual Resistivity Ratio (RRR), the fitting parameters to an expression for the temperature dependence of the resistivity, the temperatures of the local maximum and local minimum of the resistivity at the Hidden Order phase transition and the Hidden Order Transition Width ∆THO change after annealing. The plots of one key fitting parameter, the onset temperature of the Hidden Order transition and ∆THO vs RRR are compared with those of Matsuda et al. [2]. Different media used to mount samples have some impact on how effectively the samples are cooled because the media have different thermal conductivity. The DC magnetization around the superconducting transition is presented for one unannealed sample under fields of 25 Oe and 50 Oe and one annealed sample under fields of 0 Oe and 25 Oe. The DC field dependent magnetization of the annealed Sample1-1 shows a typical field dependence of a Type-II superconductor. The lower critical field Hc1 is relatively high, which may be due to flux pinning by the crystal defects.
Resumo:
Synchronization of behaviour between individuals has been found to result in a variety of prosocial outcomes. The role of endorphins in vigorous synchronous activities (Cohen, Ejsmond-Frey, Knight, & Dunbar, 2010) may underlie these effects as endorphins have been implicated in social bonding (Dunbar & Shultz, 2010). Although research on synchronous behaviour has noted that there are two dominant phases of synchrony: in-phase and anti-phase (Marsh, Richardson, Baron, & Schmidt, 2006), research on the effect of synchrony on endorphins has only incorporated in-phase synchrony. The current study examined whether both phases of synchrony would generate the synchrony effect. Twenty-two participants rowed under three counterbalanced conditions - alone, in-phase synchrony and anti-phase synchrony. Endorphin release, as measured via pain threshold, was assessed before and after each session. Change in pain threshold during the in-phase synchrony session was significantly higher than either of the other two conditions. These results suggest that the synchrony effect may be specific to just in-phase synchrony, and that social presence is not a viable explanation for the effect of synchrony on pain threshold