929 resultados para BLOCKING ELECTRODES
Resumo:
Explicit (aware) learning has been shown to evidence certain characteristics, such as extinction, blocking, occasion setting, and reliance on context. These characteristics have not been assessed in implicit (unaware) learning. The current study investigated whether implicit learning is subject to blocking. Participants completed a cued reaction time task, where they watched rapid presentations of a random sequence of 8 pairs of shapes, and responded to two target shapes. One target was always preceded by a cue. The experimental group completed a pretraining phase where half the cue, one shape, was followed by the target. Both experimental and control groups completed a training phase where both elements of the cue, two shapes, were followed by the target. Both aware and unaware participants evidenced learning, whereby responding was faster for cued than uncued targets. Aware participants in the experimental group responded faster to targets preceded by the pretrained element than by the other element of the cue. Control and unaware experimental participants were faster to respond to targets preceded by either element of the cue. As blocking was only evident in aware participants, but implicit learning was observed in all participants, it is concluded that implicit learning is not subject to blocking.
Resumo:
Objective: It is investigated to which extent measures of nonlinearity derived from surrogate data analysis are capable to quantify the changes of epileptic activity related to varying vigilance levels. Methods: Surface and intracranial EEG from foramen ovale (FO-)electrodes was recorded from a patient with temporal lobe epilepsy under presurgical evaluation over one night. Different measures of nonlinearity were estimated for non-overlapping 30-s segments for selected channels from surface and intracranial EEG. Additionally spectral measures were calculated. Sleep stages were scored according to Rechtschaffen/Kales and epileptic transients were counted and classified by visual inspection. Results: In the intracranial recordings stronger nonlinearity was found ipsilateral to the epileptogenic focus, more pronounced in NREM sleep, weaker in REM sleep. The dynamics within the NREM episodes varied with the different nonlinearity measures. Some nonlinearity measures showed variations with the sleep cycle also in the intracranial recordings contralateral to the epileptic focus and in the surface EEG. It is shown that the nonlinearity is correlated with short-term fluctuations of the delta power. The higher frequency of occurrence of clinical relevant epileptic spikes in the first NREM episode was not clearly reflected in the nonlinearity measures. Conclusions: It was confirmed that epileptic activity renders the EEG nonlinear. However, it was shown that the sleep dynamics itself also effects the nonlinearity measures. Therefore, at the present stage it is not possible to establish a unique connection between the studied nonlinearity measures and specific types of epileptic activity in sleep EEG recordings.
Resumo:
In conical refraction, when a focused Gaussian beam passes along one of the optic axes of a biaxial crystal, it is transformed into a pair of concentric bright rings at the focal plane. We demonstrate both theoretically and experimentally that this transformation is hardly affected by partially blocking the Gaussian input beam with an obstacle. We analyze the influence of the size of the obstruction both on the transverse intensity pattern of the beam and on its state of polarization, which is shown to be very robust.
Resumo:
Vibration treatment by oscillating platforms is more and more employed in the fields of exercise physiology and bone research. The rationale of this treatment is based on the neuromuscular system response elicited by vibration loads. surface Electromyography (EMG) is largely utilized to assess muscular response elicited by vibrations and Root Mean Square of the electromyography signals is often used as a concise quantitative index of muscle activity; in general, EMG envelope or RMS is expected to increase during vibration. However, it is well known that during surface bio-potential recording, motion artifacts may arise from relative motion between electrodes and skin and between skin layers. Also the only skin stretch, modifying the internal charge distribution, results in a variation of electrode potential. The aim of this study is to highlight the movements of muscles, and the succeeding relevance of motion artifacts on electrodes, in subjects undergoing vibration treatments. EMGs from quadriceps of fifteen subjects were recorded during vibration at different frequencies (15-40 Hz); Triaxial accelerometers were placed onto quadriceps, as close as possible to muscle belly, to monitor motion. The computed muscle belly displacements showed a peculiar behavior reflecting the mechanical properties of the structures involved. Motion artifact related to the impressed vibration have been recognized and related to movement of the soft tissues. In fact large artifacts are visible on EMGs and patellar electrodes recordings during vibration. Signals spectra also revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with accelerometers data. © 2008 Springer-Verlag.
Resumo:
A porous composite formed of hollow graphene spheres with opens in them and amorphous carbon containing nitrogen and oxygenated groups has been fabricated by annealing the mixture of nanodiamond and polyacrylonitrile (PAN). Electrochemical tests on the electrode made of this material show that it may be a promising electrode material for supercapacitors. The relatively high capacitance is mainly attributed to the small inner electrical resistance, the huge specific surface area and the remaining nitrogen and oxygenated groups from the PAN.
Resumo:
ACM Computing Classification System (1998): G.2.1.