846 resultados para BLEND MEMBRANES
Resumo:
Rab3A is a small GTP-binding protein expressed predominantly in brain and neuroendocrine cells, in which it is associated with synaptic and synaptic-like vesicles, respectively. Here we report that adult mouse fat cells and 3T3-L1 adipocytes also express Rab3A mRNA and protein. They do not express synaptophysin, an abundant protein in synaptic vesicles or synaptic-like vesicles. The amount of Rab3A mRNA and protein, like that of the highly homologous isoform Rab3D, increases severalfold during differentiation of 3T3-L1 fibroblasts into mature adipocytes. In fat cells, most Rab3D and Rab3A protein is bound to membrane, irrespective of insulin addition. Rab3A and Rab3D are localized in different subcellular compartments, since about half of the Rab3A, but none of the Rab3D, is associated with a low-density organelle(s). Rab3D and Rab3A may be involved in different pathways of regulated exocytosis in adipocytes. Moreover, in adipocytes Rab3A may define an exocytic organelle that is different from synaptic vesicles or synaptic-like microvesicles found in neuronal and endocrine cells.
Resumo:
Two water channel homologs were cloned recently from rat kidney, mercurial-insensitive water channel (MIWC) and glycerol intrinsic protein (GLIP). Polyclonal antibodies were raised against synthetic C-terminal peptides and purified by affinity chromatography. MIWC and GLIP antibodies recognized proteins in rat kidney with an apparent molecular mass of 30 and 27 kDa, respectively, and did not cross-react. By immunofluorescence, MIWC and GLIP were expressed together on the basolateral plasma membrane of collecting duct principal cells in kidney. By immunohistochemistry, MIWC and GLIP were expressed on tracheal epithelial cells with greater expression of GLIP on the basal plasma membrane and MIWC on the lateral membrane; only MIWC was expressed in bronchial epithelia. In eye, GLIP was expressed in conjunctival epithelium, whereas MIWC was found in iris, ciliary body, and neural cell layers in retina. MIWC and GLIP colocalized on the basolateral membrane of villus epithelial cells in colon and brain ependymal cells. Expression of MIWC and GLIP was not detected in small intestine, liver, spleen, endothelia, and cells that express water channels CHIP28 or WCH-CD. These studies suggest water/solute transporting roles for MIWC and GLIP in the urinary concentrating mechanism, cerebrospinal fluid absorption, ocular fluid balance, fecal dehydration, and airway humidification. The unexpected membrane colocalization of MIWC and GLIP in several tissues suggests an interaction at the molecular and/or functional levels.
Resumo:
The mechanisms involved in the integration of proteins into the thylakoid membrane are largely unknown. However, many of the steps of this process for the light-harvesting chlorophyll a/b protein (LHCP) have been described and reconstituted in vitro. LHCP is synthesized as a precursor in the cytosol and posttranslationally imported into chloroplasts. Upon translocation across the envelope membranes, the N-terminal transit peptide is cleaved, and the apoprotein is assembled into a soluble "transit complex" and then integrated into the thylakoid membrane via three transmembrane helices. Here we show that 54CP, a chloroplast homologue of the 54-kDa subunit of the mammalian signal recognition particle (SRP54), is essential for transit complex formation, is present in the complex, and is required for LHCP integration into the thylakoid membrane. Our data indicate that 54CP functions posttranslationally as a molecular chaperone and potentially pilots LHCP to the thylakoids. These results demonstrate that one of several pathways for protein routing to the thylakoids is homologous to the SRP pathway and point to a common evolutionary origin for the protein transport systems of the endoplasmic reticulum and the thylakoid membrane.
Resumo:
Variations in the physical deformation of the plasma membrane play a significant role in the sorting and behavior of the proteins that occupy it. Determining the interplay between membrane curvature and protein behavior required the development and thorough characterization of a model plasma membrane with well defined and localized regions of curvature. This model system consists of a fluid lipid bilayer that is supported by a dye-loaded polystyrene nanoparticle patterned glass substrate. As the physical deformation of the supported lipid bilayer is essential to our understanding of the behavior of the protein occupying the bilayer, extensive characterization of the structure of the model plasma membrane was conducted. Neither the regions of curvature in the vicinity of the polystyrene nanoparticles or the interaction between a lipid bilayer and small patches of curved polystyrene are well understood, so the results of experiments to determine these properties are described. To do so, individual fluorescently labeled proteins and lipids are tracked on this model system and in live cells. New methods for analyzing the resulting tracks and ensemble data are presented and discussed. To validate the model system and analytical methods, fluorescence microscopy was used to image a peripheral membrane protein, cholera toxin subunit B (CTB). These results are compared to results obtained from membrane components that were not expected to show an preference for membrane curvature: an individual fluorescently-labeled lipid, lissamine rhodamine B DHPE, and another protein, streptavidin associated with biotin-labeled DHPE. The observed tendency for cholera toxin subunit B to avoid curved regions of curvature, as determined by new and established analytical methods, is presented and discussed.
Resumo:
Póster presentado en 19th International Congress of Chemical and Process Engineering, Prague, Czech Republic August 28th-September 1st, 2010.
Resumo:
In the present work we study the hydroxide activation (NaOH and KOH) of phenol-formaldehyde resin derived CNFs prepared by a polymer blend technique to prepare highly porous activated carbon nanofibres (ACNFs). Morphology and textural characteristics of these ACNFs were studied and their hydrogen storage capacities at 77 K (at 0.1 MPa and at high pressures up to 4 MPa) were assessed, and compared, with reported capacities of other porous carbon materials. Phenol-formaldehyde resin derived carbon fibres were successfully activated with these two alkaline hydroxides rendering highly microporous ACNFs with reasonable good activation process yields up to 47 wt.% compared to 7 wt.% yields from steam activation for similar surface areas of 1500 m2/g or higher. These nano-sized activated carbons present interesting H2 storage capacities at 77 K which are comparable, or even higher, to other high quality microporous carbon materials. This observation is due, in part, to their nano-sized diameters allowing to enhance their packing densities to 0.71 g/cm3 and hence their resulting hydrogen storage capacities.
Resumo:
In this work carbon supported Pd nanoparticles were prepared and used as electrocatalysts for formic acid electrooxidation fuel cells. The influence of some relevant parameters such as the nominal Pt loading, the Nafion/total solids ratio as well as the Pd loading towards formic acid electrooxidation was evaluated using gold supported catalytic layer electrodes which were prepared using a similar methodology to that employed in the preparation of conventional catalyst coated membranes (CCM). The results obtained show that, for constant Pd loading, the nominal Pd loading and the Nafion percentage on the catalytic layer do not play an important role on the resulting electrocatalytic properties. The main parameter affecting the electrocatalytic activity of the electrodes seems to be the Pd loading, although the resulting activity is not directly proportional to the increased Pd loading. Thus, whereas the Pd loading is multiplied by a factor of 10, the activity is only twice which evidences an important decrease in the Pd utilization. In fact, the results obtained suggest the active layer is the outer one being clearly independent of the catalytic layer thickness. Finally, catalyst coated membranes with Pd catalyst loadings of 0.1, 0.5 and 1.2 mg cm-2 were also tested in a breathing direct formic acid fuel cell.
Resumo:
Carbon molecular sieve membranes have been analyzed in supported and unsupported configurations in this experimental study. The membranes were used to adsorb CO2, N2 and CH4, and their adsorption data were analyzed to establish differences in rate and capacity of adsorption between the two types of samples (supported and unsupported). Experimental results show an important effect of the support, which can be considered as an additional parameter to tailor pore size on these carbon membranes. Immersion calorimetry values were measured by immersing the membranes into liquids of different molecular dimensions (dichloromethane, benzene, n-hexane, 2,2-dimethylbutane). Similarities were found between adsorption and calorimetric analysis. The pore volume of the samples analyzed ranged from 0.016 to 0.263 cm3/g. The effect of the pyrolysis temperature, either 550 or 700 °C, under N2 atmosphere was also analyzed. Quantification of the pore-size distribution of the support was done by liquid-liquid displacement porosimetry. The composite membrane was used for CO2/CH4 separation before and after pore plugging was done. The ideal selectivity factors value (4.47) was over the Knudsen theoretical factor (0.60) for membrane pyrolyzed at 600 °C, which indicates the potential application of these membranes for the separation of low-molecular weight gases.
Resumo:
The synthesis of nano-sized ZIF-11 with an average size of 36 ± 6 nm is reported. This material has been named nano-zeolitic imidazolate framework-11 (nZIF-11). It has the same chemical composition and thermal stability and analogous H2 and CO2 adsorption properties to the conventional microcrystalline ZIF-11 (i.e. 1.9 ± 0.9 μm). nZIF-11 has been obtained following the centrifugation route, typically used for solid separation, as a fast new technique (pioneering for MOFs) for obtaining nanomaterials where the temperature, time and rotation speed can easily be controlled. Compared to the traditional synthesis consisting of stirring + separation, the reaction time was lowered from several hours to a few minutes when using this centrifugation synthesis technique. Employing the same reaction time (2, 5 or 10 min), micro-sized ZIF-11 was obtained using the traditional synthesis while nano-scale ZIF-11 was achieved only by using centrifugation synthesis. The small particle size obtained for nZIF-11 allowed the use of the wet MOF sample as a colloidal suspension stable in chloroform. This helped to prepare mixed matrix membranes (MMMs) by direct addition of the membrane polymer (polyimide Matrimid®) to the colloidal suspension, avoiding particle agglomeration resulting from drying. The MMMs were tested for H2/CO2 separation, improving the pure polymer membrane performance, with permeation values of 95.9 Barrer of H2 and a H2/CO2 separation selectivity of 4.4 at 35 °C. When measured at 200 °C, these values increased to 535 Barrer and 9.1.
Resumo:
Bio-based films formed by poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) plasticized with an oligomer of the lactic acid (OLA) were used as supporting matrices for an antibacterial agent (carvacrol). This paper reports the main features of the processing and physico-chemical characterization of these innovative biodegradable material based films, which were extruded and further submitted to filmature process. The effect of the addition of carvacrol and OLA on their microstructure, chemical, thermal and mechanical properties was assessed. The presence of these additives did not affect the thermal stability of PLA_PHB films, but resulted in a decrease in their crystallinity and in the elastic modulus for the active formulations. The obtained results showed the effective presence of additives in the PLA or the PLA_PHB matrix after processing at high temperatures, making them able to be used in active and bio-based formulations with antioxidant/antimicrobial performance.
Resumo:
We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons (hexane, cyclohexane, isooctane, and toluene) that are representative of the hydrocarbons present in ordinary gasoline have been tested. Each of these hydrocarbons was tested separately in experiments under conditions of constant feed rate and variable reboiler heat duty. The experimentally obtained results are compared with results calculated by a simulator. Finally, the proposed and traditional ethanol dehydration processes are compared to ascertain the advantages of the former over the latter.
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
The investigation of the electrolytic precipitation of uranium from a sample of acid leach liquor in an ion exchange membrane cell has been conducted on leach liquor from the Vitro Co. This leach liquor can be treated by the above means to precipitate essentially all the uranium and simultaneously to produce additional acid which may be used for further leaching.
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
Mode of access: Internet.