883 resultados para BISEXUAL DISPERSAL
Resumo:
Mating with more than one pollen donor, or polyandry, is common in land plants. In flowering plants, polyandry occurs when the pollen from different potential sires is distributed among the fruits of a single individual, or when pollen from more than one donor is deposited on the same stigma. Because polyandry typically leads to multiple paternity among or within fruits, it can be indirectly inferred on the basis of paternity analysis using molecular markers. A review of the literature indicates that polyandry is probably ubiquitous in plants except those that habitually self-fertilize, or that disperse their pollen in pollen packages, such as polyads or pollinia. Multiple mating may increase plants' female component by alleviating pollen limitation or by promoting competition among pollen grains from different potential sires. Accordingly, a number of traits have evolved that should promote polyandry at the flower level from the female's point of view, e.g. the prolongation of stigma receptivity or increases in stigma size. However, many floral traits, such as attractiveness, the physical manipulation of pollinators and pollen-dispensing mechanisms that lead to polyandrous pollination, have probably evolved in response to selection to promote male siring success in general, so that polyandry might often best be seen as a by-product of selection to enhance outcross siring success. In this sense, polyandry in plants is similar to geitonogamy (selfing caused by pollen transfer among flowers of the same plant), because both polyandry and geitonogamy probably result from selection to promote outcross siring success, although geitonogamy is almost always deleterious while polyandry in plants will seldom be so.
Resumo:
Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.
Resumo:
Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.
Resumo:
Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.
Resumo:
Three populations of the European water shrew Neomy fodiens have been observed by live-trapping, one of them during twelve months. During highest populations density a local maximum of 21 individuals have been caught. Recapture frequency from month to month was less than 50%, probably due to a weak trappability and an important dispersal behaviour. During the winter all three populations disappeared. Change in habitat or change in behaviour might be responsible for the lack of trapping siccess in the cold period.
Resumo:
1. Species distribution models are increasingly used to address conservation questions, so their predictive capacity requires careful evaluation. Previous studies have shown how individual factors used in model construction can affect prediction. Although some factors probably have negligible effects compared to others, their relative effects are largely unknown. 2. We introduce a general "virtual ecologist" framework to study the relative importance of factors involved in the construction of species distribution models. 3. We illustrate the framework by examining the relative importance of five key factors-a missing covariate, spatial autocorrelation due to a dispersal process in presences/absences, sample size, sampling design and modeling technique-in a real study framework based on plants in a mountain landscape at regional scale, and show that, for the parameter values considered here, most of the variation in prediction accuracy is due to sample size and modeling technique. Contrary to repeatedly reported concerns, spatial autocorrelation has only comparatively small effects. 4. This study shows the importance of using a nested statistical framework to evaluate the relative effects of factors that may affect species distribution models.
Resumo:
Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns.
Resumo:
Natural selection favours the genes which are able to introduce replicates of themselves in the next generation with higher certainty than do rival genes (Hamilton 1963). The fitness of an individual, it?s ability to produce future parents, depends on it?s own behaviour as well as on the behaviour of other individuals in the population. For instance, the intensity of competition an individual experience depends on the exploitation of resources by neighbours. The fitness is thus frequency dependent on what neighbours do. Behaviours can be classified according to the costs and benefits they have on the fitness of the behaver and it?s neighbours (Hamilton 1964, Hamilton 1975). According to this classification there exist four distinct social behaviours. (1) A gene confering the ability to use a new ressource is called selfish because it has a positive e_ect on the bearer of the gene but a negative e_ect on neighbours by the concomitant increase in competition. (2) An altruistic behaviour is defined as an action where an individual increases the fitness of a neighbour at the expense of it?s own. The e_ect is deleterious for the actor but positive for the receptor. (3) More surprinsingly, an individual might sacrifice a fraction of it?s ressources to harm another at no direct benefits. This spitefull behaviour incurs a cost for the actor but is also deleterious for the receptor. (4) Finally a cooperative behaviour breeds benefits for both actors and neighbours. In this thesis I will continue on the path traced by numerous evolutionnary biologist which attempt to fine tune our understanding of the evolution of social behaviours since Hamilton?s foundation (1963, 1964). A critical development over the last 40 years has been the realisation that competition between kin can partly or completely cancel out the role of relatedness as an agent favouring altruism (Wilson et al., 1992; Taylor, 1992a,b). Of importance is thus to determine the scale at which competition and altruism occur. One mechanism avoiding the complete dilution of relatedness by competition is the conditionnal expression of the social behaviors. Focus will be given in this thesis at the role played by di_erent recognition mechanism in paving the way to altruism (Komdeur and Hatchwell, 1999) when the population has a spatial structure. Further, the evolution of spite will also be considered in these settings. The thesis is fractionated into two parts. First, di_erent models promoting altruism cooperation and spite will be compared under the same theoretical umbrella. This is a rather informal and more personnal part of my thesis. It also serve as a justification and basis to "Altruism among kin and non-kin individuals" which is an article attempting to clas- sify the mechanisms leading to altruism and cooperation. Second, in the annexe, there are three research papers about kin selection, altruism and dispersal: "Is sociality driven by the costs of dispersal or the benefits of philopatry?: A role for kin-discrimination mechanism", "Altruism, dispersal and phenotype kin recognition" and "Inbreeding avoidance through kin recognition: choosy female boost male dispersal" this last paper incorporates kin recognition as an agent favoring sex-biased dispersal.
Resumo:
Les Ephéméroptères constituent un ordre très archaïque d?insectes ailés, comprenant un nombre réduit d?espèces (actuellement environ 2500 espèces). Les larves sont aquatiques; la durée de ce stade est en général d?une année. Le stade adulte est par contre extrêmement bref: de quelques heures à quelques jours. La fonction quasi unique de ce stade est la reproduction. Par sa superficie, Madagascar est la quatrième île du monde. Elle est située dans la partie occidentale de l?Océan Indien à plus de 300 km de la côte africaine. Madagascar faisait partie du super-continent Gondwana. Elle s?est séparée de l?Afrique (-165 M.a.), puis a migré vers le Sud (-125 M.a.) avant de se détacher du sous-continent indien (-65 M.a.). La connaissance des Ephéméroptères malgaches était, jusqu?à très récemment, extrêmement limitée. Grâce au programme Biodiversité et biotypologie des eaux continentales malgaches, lancé conjointement par l?ORSTOM (actuel IRD, France) et le CNRE (Madagascar), un inventaire à large échelle de la macrofaune benthique malgache a été entrepris. La systématique de plusieurs familles d?Ephéméroptères (Tricorythidae, Polymitarcyidae, Palingeniidae,?), ainsi que d?autres groupes d?invertébrés (Trichoptères, Simuliidae, macrocrustacés) a fait l?objet d?études approfondies. La présente étude consistue un des volets de ce programme. Jusqu?au milieu des années 1990, seules quatre espèces valides appartenant à trois genres différents étaient décrites de Madagascar. En 6 ans, ce ne sont pas moins de 25 articles qui sont consacrés à la systématique des Baetidae, permettant de décrire 50 espèces et 8 genres nouveaux. La faune malgache des Baetidae compte actuellement 22 genres et 54 espèces. Malgré sa taille, Madagascar possède une richesse, tant générique que spécifique équivalente à celle d?un continent. Notre connaissance des Baetidae est suffisamment avancée pour mener une étude cladistique et biogéographique. La reconstruction phylogénétique a permis de mettre en évidence cinq lignées principales à Madagascar et de préciser, pour chacune d?elles, les genres inclus et les caractères propres. La faune des Baetidae malgaches présente un taux d?endémicité très élevé: 53 des 54 espèces et un tiers des genres sont endémiques. Elle montre des affinités extrêmement fortes avec la faune africaine, puisque 90% des genres présents à Madagascar ou en Afrique ont une répartition strictement restreinte à cette région. Les autres composantes, notamment orientales et océaniennes, sont négligeables; ces régions n?ont en commun avec Madagascar qu?un nombre restreint de genres cosmopolites. Ces affinités sont en contradiction avec les données géologiques de la dislocation du Gondwana. Plusieurs explications peuvent être données pour résoudre cette contradiction. La plus vraisemblable est que le pouvoir de dispersion des Ephéméroptères, et des Baetidae en particulier, est nettement sous-estimé. L?étude des faunes des îles volcaniques récentes, telles que les Comores, démontre clairement que les Baetidae sont capables de dispersion sur une distance de plus de 300 km. Il est donc possible d?envisager une colonisation de Madagascar à partir de l?Afrique continentale postérieure à la séparation des deux plaques. Nous avons établi des scénarios retraçant l?histoire biogéographique de chacune des cinq lignées. Pour quatre d?entre elles, l?Afrique continentale est le centre d?origine. La cinquième lignée aurait une origine paléarctique; l?Afrique représenterait un centre secondaire de spéciation. Ces lignées auraient secondairement colonisé Madagascar à partir de l?Afrique continentale. Ce travail ouvre donc d?importantes perspectives. Il rend possible l?utilisation à un niveau générique, voire spécifique, des Baetidae pour des travaux de faunistique ou d?écologie, en particulier pour des études liées à la dégradation de la qualité de l?eau. Il devrait également pouvoir servir de base pour l?étude et la compréhension des phénomènes de dispersion et colonisation dans les îles et archipels de l?Ouest de l?Océan Indien.<br/><br/>Mayflies (Ephemeroptera) are among the oldest known flying insects and encompass a very small number of species (ca 2500 species). Larvae are strictly freshwater inhabitants; this stage lasts generally one year. The imaginal stage is extremely short, from few hours to few days, and is devoted almost entirely to reproduction. Madagascar is the fourth largest island in the world by area. It is situated in the western part of the Indian Ocean, at a distance of more than 300 km from the African coast. Madagascar belonged to Gondwana. It was first separated from the African plate (-165 M.y.), then moved to the South (-65 M.y.), before the break-off with the Indian plate (-65 M.y.). Knowledge of the Malagasy mayflies was until recently extremely poor. The program Biodiversity and Biotypology of Malagasy Freshwaters, jointly run by the French ORSTOM and the Malagasy CNRE, began a global survey of the freshwater macroinvertebrates. The systematics of several mayfly families (Tricorythidae, Polymitarcyidae, Palingeniidae,?), and other invertebrate groups (Caddisflies, Blackflies,?) was the subject of ground studies. Our present study is one part of this global program. Until the middle of the nineties, only four baetid species belonging to three different genera had been described from Madagascar. During the last six years, 25 papers were dedicated to the systematics of the Baetidae, allowing the description of 50 new species and 8 new genera. The Malagasy fauna encompasses now 22 genera and 54 species. Despite its size, Madagascar has the same diversity, at specific and generic level, as a continent. Our knowledge of the Baetidae is sufficient to perform a cladistic and biogeographical study. Our phylogenetic reconstruction allows us to propose five main lineages and to indicate, for each of them, the genera included and their features. The Malagasy fauna of Baetidae possesses a high level of endemicity: 53 of the 54 species and one third of the genera are endemic. It shows extremely strong affinities with the African fauna, as more than 90% of the genera present in Madagascar or in Africa have a distribution restricted to this area. Other components, especially Oriental and Oceanian, are negligible. These areas share with Madagascar only a few widespread genera. These African affinities are in contradiction with the geological events, especially the break-off history of Gondwana. Some explanations can be given to solve this contradiction. The most likely is that the dispersal power of the mayflies, especially of the Baetidae, is greatly underestimated. The study of recent volcanic islands, particularly of the Comoros, clearly demonstrates that the Baetidae are able to disperse over more than 300 km. Consequently, a colonisation by the Baetidae, of Madagascar from the continental Africa, after the break-off must be considered as possible. We have established scenarios explaining the biogeographical history of each of the five lineages. For four of them, Africa has to be regarded as the centre of origin. The fifth lineage probably has a Palearctic origin; Africa should be considered as a secondary centre of speciation. These lineages should have secondarily colonised Madagascar from continental Africa. This work opens up new perspectives. It allows the use of the Baetidae for faunistic and ecological studies, especially for problems related to water quality. It must be also considered as a first step for understanding the dispersion and colonisation of the islands of the western part of the Indian Ocean.
Resumo:
La biologie de la conservation est communément associée à la protection de petites populations menacées d?extinction. Pourtant, il peut également être nécessaire de soumettre à gestion des populations surabondantes ou susceptibles d?une trop grande expansion, dans le but de prévenir les effets néfastes de la surpopulation. Du fait des différences tant quantitatives que qualitatives entre protection des petites populations et contrôle des grandes, il est nécessaire de disposer de modèles et de méthodes distinctes. L?objectif de ce travail a été de développer des modèles prédictifs de la dynamique des grandes populations, ainsi que des logiciels permettant de calculer les paramètres de ces modèles et de tester des scénarios de gestion. Le cas du Bouquetin des Alpes (Capra ibex ibex) - en forte expansion en Suisse depuis sa réintroduction au début du XXème siècle - servit d?exemple. Cette tâche fut accomplie en trois étapes : En premier lieu, un modèle de dynamique locale, spécifique au Bouquetin, fut développé : le modèle sous-jacent - structuré en classes d?âge et de sexe - est basé sur une matrice de Leslie à laquelle ont été ajoutées la densité-dépendance, la stochasticité environnementale et la chasse de régulation. Ce modèle fut implémenté dans un logiciel d?aide à la gestion - nommé SIM-Ibex - permettant la maintenance de données de recensements, l?estimation automatisée des paramètres, ainsi que l?ajustement et la simulation de stratégies de régulation. Mais la dynamique d?une population est influencée non seulement par des facteurs démographiques, mais aussi par la dispersion et la colonisation de nouveaux espaces. Il est donc nécessaire de pouvoir modéliser tant la qualité de l?habitat que les obstacles à la dispersion. Une collection de logiciels - nommée Biomapper - fut donc développée. Son module central est basé sur l?Analyse Factorielle de la Niche Ecologique (ENFA) dont le principe est de calculer des facteurs de marginalité et de spécialisation de la niche écologique à partir de prédicteurs environnementaux et de données d?observation de l?espèce. Tous les modules de Biomapper sont liés aux Systèmes d?Information Géographiques (SIG) ; ils couvrent toutes les opérations d?importation des données, préparation des prédicteurs, ENFA et calcul de la carte de qualité d?habitat, validation et traitement des résultats ; un module permet également de cartographier les barrières et les corridors de dispersion. Le domaine d?application de l?ENFA fut exploré par le biais d?une distribution d?espèce virtuelle. La comparaison à une méthode couramment utilisée pour construire des cartes de qualité d?habitat, le Modèle Linéaire Généralisé (GLM), montra qu?elle était particulièrement adaptée pour les espèces cryptiques ou en cours d?expansion. Les informations sur la démographie et le paysage furent finalement fusionnées en un modèle global. Une approche basée sur un automate cellulaire fut choisie, tant pour satisfaire aux contraintes du réalisme de la modélisation du paysage qu?à celles imposées par les grandes populations : la zone d?étude est modélisée par un pavage de cellules hexagonales, chacune caractérisée par des propriétés - une capacité de soutien et six taux d?imperméabilité quantifiant les échanges entre cellules adjacentes - et une variable, la densité de la population. Cette dernière varie en fonction de la reproduction et de la survie locale, ainsi que de la dispersion, sous l?influence de la densité-dépendance et de la stochasticité. Un logiciel - nommé HexaSpace - fut développé pour accomplir deux fonctions : 1° Calibrer l?automate sur la base de modèles de dynamique (par ex. calculés par SIM-Ibex) et d?une carte de qualité d?habitat (par ex. calculée par Biomapper). 2° Faire tourner des simulations. Il permet d?étudier l?expansion d?une espèce envahisseuse dans un paysage complexe composé de zones de qualité diverses et comportant des obstacles à la dispersion. Ce modèle fut appliqué à l?histoire de la réintroduction du Bouquetin dans les Alpes bernoises (Suisse). SIM-Ibex est actuellement utilisé par les gestionnaires de la faune et par les inspecteurs du gouvernement pour préparer et contrôler les plans de tir. Biomapper a été appliqué à plusieurs espèces (tant végétales qu?animales) à travers le Monde. De même, même si HexaSpace fut initialement conçu pour des espèces animales terrestres, il pourrait aisément être étndu à la propagation de plantes ou à la dispersion d?animaux volants. Ces logiciels étant conçus pour, à partir de données brutes, construire un modèle réaliste complexe, et du fait qu?ils sont dotés d?une interface d?utilisation intuitive, ils sont susceptibles de nombreuses applications en biologie de la conservation. En outre, ces approches peuvent également s?appliquer à des questions théoriques dans les domaines de l?écologie des populations et du paysage.<br/><br/>Conservation biology is commonly associated to small and endangered population protection. Nevertheless, large or potentially large populations may also need human management to prevent negative effects of overpopulation. As there are both qualitative and quantitative differences between small population protection and large population controlling, distinct methods and models are needed. The aim of this work was to develop theoretical models to predict large population dynamics, as well as computer tools to assess the parameters of these models and to test management scenarios. The alpine Ibex (Capra ibex ibex) - which experienced a spectacular increase since its reintroduction in Switzerland at the beginning of the 20th century - was used as paradigm species. This task was achieved in three steps: A local population dynamics model was first developed specifically for Ibex: the underlying age- and sex-structured model is based on a Leslie matrix approach with addition of density-dependence, environmental stochasticity and culling. This model was implemented into a management-support software - named SIM-Ibex - allowing census data maintenance, parameter automated assessment and culling strategies tuning and simulating. However population dynamics is driven not only by demographic factors, but also by dispersal and colonisation of new areas. Habitat suitability and obstacles modelling had therefore to be addressed. Thus, a software package - named Biomapper - was developed. Its central module is based on the Ecological Niche Factor Analysis (ENFA) whose principle is to compute niche marginality and specialisation factors from a set of environmental predictors and species presence data. All Biomapper modules are linked to Geographic Information Systems (GIS); they cover all operations of data importation, predictor preparation, ENFA and habitat suitability map computation, results validation and further processing; a module also allows mapping of dispersal barriers and corridors. ENFA application domain was then explored by means of a simulated species distribution. It was compared to a common habitat suitability assessing method, the Generalised Linear Model (GLM), and was proven better suited for spreading or cryptic species. Demography and landscape informations were finally merged into a global model. To cope with landscape realism and technical constraints of large population modelling, a cellular automaton approach was chosen: the study area is modelled by a lattice of hexagonal cells, each one characterised by a few fixed properties - a carrying capacity and six impermeability rates quantifying exchanges between adjacent cells - and one variable, population density. The later varies according to local reproduction/survival and dispersal dynamics, modified by density-dependence and stochasticity. A software - named HexaSpace - was developed, which achieves two functions: 1° Calibrating the automaton on the base of local population dynamics models (e.g., computed by SIM-Ibex) and a habitat suitability map (e.g. computed by Biomapper). 2° Running simulations. It allows studying the spreading of an invading species across a complex landscape made of variously suitable areas and dispersal barriers. This model was applied to the history of Ibex reintroduction in Bernese Alps (Switzerland). SIM-Ibex is now used by governmental wildlife managers to prepare and verify culling plans. Biomapper has been applied to several species (both plants and animals) all around the World. In the same way, whilst HexaSpace was originally designed for terrestrial animal species, it could be easily extended to model plant propagation or flying animals dispersal. As these softwares were designed to proceed from low-level data to build a complex realistic model and as they benefit from an intuitive user-interface, they may have many conservation applications. Moreover, theoretical questions in the fields of population and landscape ecology might also be addressed by these approaches.
Resumo:
Colonization is likely to be more successful for species with an ability to self-fertilize and thus to establish new populations as single individuals. As a result, self-compatibility should be common among colonizing species. This idea, labelled 'Baker's law', has been influential in discussions of sexual-system and mating-system evolution. However, its generality has been questioned, because models of the evolution of dispersal and the mating system predict an association between high dispersal rates and outcrossing rather than selfing, and because of many apparent counter examples to the law. The contrasting predictions made by models invoking Baker's law versus those for the evolution of the mating system and dispersal urges a reassessment of how we should view both these traits. Here, I review the literature on the evolution of mating and dispersal in colonizing species, with a focus on conceptual issues. I argue for the importance of distinguishing between the selfing or outcrossing rate and a simple ability to self-fertilize, as well as for the need for a more nuanced consideration of dispersal. Colonizing species will be characterized by different phases in their life pattern: dispersal to new habitat, implying an ecological sieve on dispersal traits; establishment and a phase of growth following colonization, implying a sieve on reproductive traits; and a phase of demographic stasis at high density, during which new trait associations can evolve through local adaptation. This dynamic means that the sorting of mating-system and dispersal traits should change over time, making simple predictions difficult.
Resumo:
Outcrops of old strata at the shelf edge resulting from erosive gravity-driven flows have been globally described on continental margins. The reexposure of old strata allows for the reintroduction of aged organic carbon (OC), sequestered in marine sediments for thousands of years, into the modern carbon cycle. This pool of reworked material represents an additional source of C-14-depleted organic carbon supplied to the ocean, in parallel with the weathering of fossil organic carbon delivered by rivers from land. To understand the dynamics and implications of this reexposure at the shelf edge, a biogeochemical study was carried out in the Gulf of Lions (Mediterranean Sea) where erosive processes, driven by shelf dense water cascading, are currently shaping the seafloor at the canyon heads. Mooring lines equipped with sediment traps and current meters were deployed during the cascading season in the southwestern canyon heads, whereas sediment cores were collected along the sediment dispersal system from the prodelta regions down to the canyon heads. Evidence from grain-size, X-radiographs and Pb-210 activity indicate the presence in the upper slope of a shelly-coarse surface stratum overlying a consolidated deposit. This erosive discontinuity was interpreted as being a result of dense water cascading that is able to generate sufficient shear stress at the canyon heads to mobilize the coarse surface layer, eroding the basal strata. As a result, a pool of aged organic carbon (Delta C-14 = -944.5 +/- 24.7%; mean age 23,650 +/- 3,321 ybp) outcrops at the modern seafloor and is reexposed to the contemporary carbon cycle. This basal deposit was found to have relatively high terrigenous organic carbon (lignin = 1.48 +/- 0.14 mg/100 mg OC), suggesting that this material was deposited during the last low sea-level stand. A few sediment trap samples showed anomalously depleted radiocarbon concentrations (Delta C-14 = -704.4 +/- 62.5%) relative to inner shelf (Delta C-14 = -293.4 +/- 134.0%), mid-shelf (Delta C-14 = -366.6 +/- 51.1%), and outer shelf (Delta C-14 = -384 +/- 47.8%) surface sediments. Therefore, although the major source of particulate material during the cascading season is resuspended shelf deposits, there is evidence that this aged pool of organic carbon can be eroded and laterally advected downslope.
Resumo:
Mayflies (Ephemeroptera) are known to generally present a high degree of insular endemism: half of the 28 species known from Corsica and Sardinia are considered as endemic. We sequenced the DNA barcode (a fragment of the mitochondrial COI gene) of 349 specimens from 50 localities in Corsica, Sardinia, continental Europe and North Africa. We reconstructed gene trees of eight genera or species groups representing the main mayfly families. Alternative topologies were built to test if our reconstructions suggested a single or multiple Corsican/Sardinian colonization event(s) in each genus or species group. A molecular clock calibrated with different evolution rates was used to try to link speciation processes with geological events. Our results confirm the high degree of endemism of Corsican and Sardinian mayflies and the close relationship between these two faunas. Moreover, we have evidence that the mayfly diversity of the two islands is highly underestimated as at least six new putative species occur on the two islands. We demonstrated that the Corsican and Sardinian mayfly fauna reveals a complex history mainly related to geological events. The Messinian Salinity Crisis, which is thought to have reduced marine barriers, thus facilitating gene flow between insular and continental populations, was detected as the most important event in the speciation of most lineages. Vicariance processes related to the split and rotation of the Corso-Sardinian microplate had a minor impact as they involved only two genera with limited dispersal and ecological range. Colonization events posterior to the Messinian Salinity Crisis had only marginal effects as we had indication of recent gene flow only in two clades. With very limited recent gene flow and a high degree of endemism, mayflies from Corsica and Sardinia present all the criteria for conservation prioritization.
Resumo:
The linking of North and South America by the Isthmus of Panama had major impacts on global climate, oceanic and atmospheric currents, and biodiversity, yet the timing of this critical event remains contentious. The Isthmus is traditionally understood to have fully closed by ca. 3.5 million years ago (Ma), and this date has been used as a benchmark for oceanographic, climatic, and evolutionary research, but recent evidence suggests a more complex geological formation. Here, we analyze both molecular and fossil data to evaluate the tempo of biotic exchange across the Americas in light of geological evidence. We demonstrate significant waves of dispersal of terrestrial organisms at approximately ca. 20 and 6 Ma and corresponding events separating marine organisms in the Atlantic and Pacific oceans at ca. 23 and 7 Ma. The direction of dispersal and their rates were symmetrical until the last ca. 6 Ma, when northern migration of South American lineages increased significantly. Variability among taxa in their timing of dispersal or vicariance across the Isthmus is not explained by the ecological factors tested in these analyses, including biome type, dispersal ability, and elevation preference. Migration was therefore not generally regulated by intrinsic traits but more likely reflects the presence of emergent terrain several millions of years earlier than commonly assumed. These results indicate that the dramatic biotic turnover associated with the Great American Biotic Interchange was a long and complex process that began as early as the Oligocene-Miocene transition.
Resumo:
Do mediterranean genera not included in Tachet et al. 2002 have mediterranean trait characteristics? Multiple-trait databases are increasingly used in community ecology in different regions of the world. In Europe, Tachet et al.(2002) compiled an aquatic macroinvertebrate database for 473 taxa using information on 11 biological traits described by 63 categories. However, less studied regions, at the time of the compilation of the database, such as the mediterranean Basin, can harbour exclusive genera, which were not included in Tachet"s database. In a large-scale study across the mediterranean Basin, we found 44 genera that were not included in Tachet"s database (NEW genera). Our main aim was to compile trait information for these NEW genera and assess whether these genera had specific traits that could explain their exclusivity to the Mediterranean region. We compared the trait characteristics of NEW genera to those of genera only found in Mediterranean or temperate regions that were included in the Tachet"s database (MED and TEM genera, respectively). We found that NEW genera had more mediterranean characteristics than TEM genera and that some trait categories of NEW genera were even more mediterranean-like than the traits of MED genera (e.g., diapause). Therefore, our results suggest that the specific biological traits of these NEW genera allow them to cope successfully and exclusively with the harsh environmental conditions of the mediterranean climate rivers, which could partially explain their absence in Tachet"s database. Other explanations, such as the limited dispersal ability of these NEW genera to reach and colonize temperate Europe or the rarity of these NEW genera, should also be considered. We provide biological traits of the NEW genera to be used in future studies on the mediterranean river ecology.