929 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration
Resumo:
A study was conducted to estimate variation among laboratories and between manual and automated techniques of measuring pressure on the resulting gas production profiles (GPP). Eight feeds (molassed sugarbeet feed, grass silage, maize silage, soyabean hulls, maize gluten feed, whole crop wheat silage, wheat, glucose) were milled to pass a I mm screen and sent to three laboratories (ADAS Nutritional Sciences Research Unit, UK; Institute of Grassland and Environmental Research (IGER), UK; Wageningen University, The Netherlands). Each laboratory measured GPP over 144 h using standardised procedures with manual pressure transducers (MPT) and automated pressure systems (APS). The APS at ADAS used a pressure transducer and bottles in a shaking water bath, while the APS at Wageningen and IGER used a pressure sensor and bottles held in a stationary rack. Apparent dry matter degradability (ADDM) was estimated at the end of the incubation. GPP were fitted to a modified Michaelis-Menten model assuming a single phase of gas production, and GPP were described in terms of the asymptotic volume of gas produced (A), the time to half A (B), the time of maximum gas production rate (t(RM) (gas)) and maximum gas production rate (R-M (gas)). There were effects (P<0.001) of substrate on all parameters. However, MPT produced more (P<0.001) gas, but with longer (P<0.001) B and t(RM gas) (P<0.05) and lower (P<0.001) R-M gas compared to APS. There was no difference between apparatus in ADDM estimates. Interactions occurred between substrate and apparatus, substrate and laboratory, and laboratory and apparatus. However, when mean values for MPT were regressed from the individual laboratories, relationships were good (i.e., adjusted R-2 = 0.827 or higher). Good relationships were also observed with APS, although they were weaker than for MPT (i.e., adjusted R-2 = 0.723 or higher). The relationships between mean MPT and mean APS data were also good (i.e., adjusted R 2 = 0. 844 or higher). Data suggest that, although laboratory and method of measuring pressure are sources of variation in GPP estimation, it should be possible using appropriate mathematical models to standardise data among laboratories so that data from one laboratory could be extrapolated to others. This would allow development of a database of GPP data from many diverse feeds. (c) 2005 Published by Elsevier B.V.
Resumo:
In this paper, Bayesian decision procedures are developed for dose-escalation studies based on bivariate observations of undesirable events and signs of therapeutic benefit. The methods generalize earlier approaches taking into account only the undesirable outcomes. Logistic regression models are used to model the two responses, which are both assumed to take a binary form. A prior distribution for the unknown model parameters is suggested and an optional safety constraint can be included. Gain functions to be maximized are formulated in terms of accurate estimation of the limits of a therapeutic window or optimal treatment of the next cohort of subjects, although the approach could be applied to achieve any of a wide variety of objectives. The designs introduced are illustrated through simulation and retrospective implementation to a completed dose-escalation study. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We focus on the comparison of three statistical models used to estimate the treatment effect in metaanalysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
We describe a Bayesian method for investigating correlated evolution of discrete binary traits on phylogenetic trees. The method fits a continuous-time Markov model to a pair of traits, seeking the best fitting models that describe their joint evolution on a phylogeny. We employ the methodology of reversible-jump ( RJ) Markov chain Monte Carlo to search among the large number of possible models, some of which conform to independent evolution of the two traits, others to correlated evolution. The RJ Markov chain visits these models in proportion to their posterior probabilities, thereby directly estimating the support for the hypothesis of correlated evolution. In addition, the RJ Markov chain simultaneously estimates the posterior distributions of the rate parameters of the model of trait evolution. These posterior distributions can be used to test among alternative evolutionary scenarios to explain the observed data. All results are integrated over a sample of phylogenetic trees to account for phylogenetic uncertainty. We implement the method in a program called RJ Discrete and illustrate it by analyzing the question of whether mating system and advertisement of estrus by females have coevolved in the Old World monkeys and great apes.
Resumo:
Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).
Resumo:
Approximate Bayesian computation (ABC) is a highly flexible technique that allows the estimation of parameters under demographic models that are too complex to be handled by full-likelihood methods. We assess the utility of this method to estimate the parameters of range expansion in a two-dimensional stepping-stone model, using samples from either a single deme or multiple demes. A minor modification to the ABC procedure is introduced, which leads to an improvement in the accuracy of estimation. The method is then used to estimate the expansion time and migration rates for five natural common vole populations in Switzerland typed for a sex-linked marker and a nuclear marker. Estimates based on both markers suggest that expansion occurred < 10,000 years ago, after the most recent glaciation, and that migration rates are strongly male biased.
Resumo:
Purpose: Acquiring details of kinetic parameters of enzymes is crucial to biochemical understanding, drug development, and clinical diagnosis in ocular diseases. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. Methods: We have developed Bayesian utility functions to minimise kinetic parameter variance involving differentiation of model expressions and matrix inversion. These have been applied to the simple kinetics of the enzymes in the glyoxalase pathway (of importance in posttranslational modification of proteins in cataract), and the complex kinetics of lens aldehyde dehydrogenase (also of relevance to cataract). Results: Our successful application of Bayesian statistics has allowed us to identify a set of rules for designing optimum kinetic experiments iteratively. Most importantly, the distribution of points in the range is critical; it is not simply a matter of even or multiple increases. At least 60 % must be below the KM (or plural if more than one dissociation constant) and 40% above. This choice halves the variance found using a simple even spread across the range.With both the glyoxalase system and lens aldehyde dehydrogenase we have significantly improved the variance of kinetic parameter estimation while reducing the number and costs of experiments. Conclusions: We have developed an optimal and iterative method for selecting features of design such as substrate range, number of measurements and choice of intermediate points. Our novel approach minimises parameter error and costs, and maximises experimental efficiency. It is applicable to many areas of ocular drug design, including receptor-ligand binding and immunoglobulin binding, and should be an important tool in ocular drug discovery.
Resumo:
In areas such as drug development, clinical diagnosis and biotechnology research, acquiring details about the kinetic parameters of enzymes is crucial. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. We demonstrate that a Bayesian approach (the use of prior knowledge) can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian Utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-M and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Physiological evidence using Infrared Video Microscopy during the uncaging of glutamate has proven the existence of excitable calcium ion channels in spine heads, highlighting the need for reliable models of spines. In this study we compare the three main methods of simulating excitable spines: Baer & Rinzel's Continuum (B&R) model, Coombes' Spike-Diffuse-Spike (SDS) model and paired cable and ion channel equations (Cable model). Tests are done to determine how well the models approximate each other in terms of speed and heights of travelling waves. Significant quantitative differences are found between the models: travelling waves in the SDS model in particular are found to travel at much lower speeds and sometimes much higher voltages than in the Cable or B&R models. Meanwhile qualitative differences are found between the B&R and SDS models over realistic parameter ranges. The cause of these differences is investigated and potential solutions proposed.
Resumo:
A new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) over the ocean is presented, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain-rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes’s theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance the understanding of theoretical benefits of the Bayesian approach, sensitivity analyses have been conducted based on two synthetic datasets for which the “true” conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism, but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak owing to saturation effects. It is also suggested that both the choice of the estimators and the prior information are crucial to the retrieval. In addition, the performance of the Bayesian algorithm herein is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.
Resumo:
Bayesian Model Averaging (BMA) is used for testing for multiple break points in univariate series using conjugate normal-gamma priors. This approach can test for the number of structural breaks and produce posterior probabilities for a break at each point in time. Results are averaged over specifications including: stationary; stationary around trend and unit root models, each containing different types and number of breaks and different lag lengths. The procedures are used to test for structural breaks on 14 annual macroeconomic series and 11 natural resource price series. The results indicate that there are structural breaks in all of the natural resource series and most of the macroeconomic series. Many of the series had multiple breaks. Our findings regarding the existence of unit roots, having allowed for structural breaks in the data, are largely consistent with previous work.