999 resultados para Astrophysics
Resumo:
Abstract. Interplanetary scintillation observations of 48 of the 55 Augusto et al. (1998) flat spectrum radio sources were carried out at 111 MHz using the interplanetary scintillation method on the Large Phased Array (LPA) in Russia. Due to the large size of the LPA beam (1◦ × 0.5◦) a careful inspection of all possible confusion sources was made using extant large radio surveys: 37 of the 48 sources are not confused. We were able to estimate the scintillating flux densities of 13 sources, getting upper limits for the remaining 35. Gathering more or improving extant VLBI data on these sources might significantly improve our results. This proof-of-concept project tells us that compact (<1 ) flat spectrum radio sources show strong enough scintillations at 111 MHz to establish/constrain their spectra (low-frequency end). Key words. galaxies: general – galaxies: active – galaxies: quasars: general
Resumo:
The great majority of analytical models for extragalactic radio sources suppose self-similarity and can be classified into three types: I, II and III. We have developed a model that represents a generalization of most models found in the literature and showed that these three types are particular cases. The model assumes that the area of the head of the jet varies with the jet size according to a power law and the jet luminosity is a function of time. As it is usually done, the basic hypothesis is that there is an equilibrium between the pressure exerted both by the head of the jet and the cocoon walls and the ram pressure of the ambient medium. The equilibrium equations and energy conservation equation allow us to express the size and width of the source and the pressure in the cocoon as a power law and find the respective exponents. All these assumptions can be used to calculate the evolution of the source size, width and radio luminosity. This can then be compared with the observed width-size relation for radio lobes and the power-size (P-D) diagram of both compact (GPS and CSS) and extended sources from the 3CR catalogue. In this work we introduce two important improvement as compared with a previous work: (1)We have put together a larger sample of both compact and extended radio sources
Resumo:
Double radio sources have been studied since the discovery of extragalactic radio sources in the decade of 1930. Since then, several numerical studies and analytical models have been proposed seeking a better understanding of the physical phenomena that determines the origin and evolution of such objects. In this thesis, we intended to study the evolution problem of the double radio sources in two fronts: in the ¯rst we have developed an analytical self-similar model that represents a generalization of most models found in the literature and solve some existent problems related to the jet head evolution. We deal with this problem using samples of hot spot sizes to ¯nd a power law relation between the jet head dimension and the source length. Using our model, we were able to draw the evolution curves of the double sources in a PD diagram for both compact sources (GPS and CSS) and extended sources of the 3CR catalogue. We have alson developed a computation tool that allows us to generate synthetic radio maps of the double sources. The objective is to determine the principal physical parameters of those objects by comparing synthetic and observed radio maps. In the second front, we used numeric simulations to study the interaction of the extra- galactic jets with the environment. We simulated situations where the jet propagates in a medium with high density contrast gas clouds capable to block the jet forward motion, forming the distorted structures observed in the morphology of real sources. We have also analyzed the situation in which the jet changes its propagation direction due to a change of the source main axis, creating the X-shaped sources. The comparison between our simulations and the real double radio sources, enable us to determine the values of the main physical parameters responsible for the distortions observed in those objects
Resumo:
In the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.
Resumo:
The study of solar-type stars also includes the familiar solar analogs and twins. These objects have been one of the major research subjects in astrophysics nowadays. A direct comparison of solar activity with chromospheric activity indices for a set of stars very similar to the Sun (twins and analogs) provides an excellent opportunity to study the evolution of stellar activity on timescales of the order of the lifetime on the main sequence. This work deals with the relationship between the abundance of lithium, chromospheric activity, X-ray emission and rotation period in terms of stellar ages. We explore the influence of stellar evolution in the global properties of the stars and the aspects linked to its coronal, chromospheric and magnetic activity. Our main objective is to probe the law of decay of each of these parameters based on a sample of stars classified as well-connected as analogs stars and solar twins.
Resumo:
Lithium (Li) is a chemical element with atomic number 3 and it is among the lightest known elements in the universe. In general, the Lithium is found in the nature under the form of two stable isotopes, the 6Li and 7Li. This last one is the most dominant and responds for about 93% of the Li found in the Universe. Due to its fragileness this element is largely used in the astrophysics, especially in what refers to the understanding of the physical process that has occurred since the Big Bang going through the evolution of the galaxies and stars. In the primordial nucleosynthesis in the Big Bang moment (BBN), the theoretical calculation forecasts a Li production along with all the light elements such as Deuterium and Beryllium. To the Li the BNB theory reviews a primordial abundance of Log log ǫ(Li) =2.72 dex in a logarithmic scale related to the H. The abundance of Li found on the poor metal stars, or pop II stars type, is called as being the abundance of Li primordial and is the measure as being log ǫ(Li) =2.27 dex. In the ISM (Interstellar medium), that reflects the current value, the abundance of Lithium is log ǫ(Li) = 3.2 dex. This value has great importance for our comprehension on the chemical evolution of the galaxy. The process responsible for the increasing of the primordial value present in the Li is not clearly understood until nowadays. In fact there is a real contribution of Li from the giant stars of little mass and this contribution needs to be well streamed if we want to understand our galaxy. The main objection in this logical sequence is the appearing of some giant stars with little mass of G and K spectral types which atmosphere is highly enriched with Li. Such elevated values are exactly the opposite of what could happen with the typical abundance of giant low mass stars, where convective envelops pass through a mass deepening in which all the Li should be diluted and present abundances around log ǫ(Li) ∼1.4 dex following the model of stellar evolution. In the Literature three suggestions are found that try to reconcile the values of the abundance of Li theoretical and observed in these rich in Li giants, but any of them bring conclusive answers. In the present work, we propose a qualitative study of the evolutionary state of the rich in Li stars in the literature along with the recent discovery of the first star rich in Li observed by the Kepler Satellite. The main objective of this work is to promote a solid discussion about the evolutionary state based on the characteristic obtained from the seismic analysis of the object observed by Kepler. We used evolutionary traces and simulation done with the population synthesis code TRILEGAL intending to evaluate as precisely as possible the evolutionary state of the internal structure of these groups of stars. The results indicate a very short characteristic time when compared to the evolutionary scale related to the enrichment of these stars
Resumo:
The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
ROTATION is one the most important aspects to be observed in stellar astrophysics. Here we investigate that particularly in stars with planets. This physical parameter supplies information about the distribution of angular momentum in the planetary system, as well as its role on the control of dierent phenomena, including coronal and cromospherical emission and on the ones due of tidal effects. In spite of the continuous solid advances made on the study of the characteristics and properties of planet host stars, the main features of their rotational behavior is are not well established yet. In this context, the present work brings an unprecedented study about the rotation and angular momentum of planet-harbouring stars, as well as the correlation between rotation and stellar and planetary physical properties. Our analysis is based on a sample of 232 extrasolar planets, orbiting 196 stars of dierent luminosity classes and spectral types. In addition to the study of their rotational behavior, the behavior of the physical properties of stars and their orbiting planets was also analyzed, including stellar mass and metallicity, as well as the planetary orbital parameters. As main results we can underline that the rotation of stars with planets present two clear features: stars with Tef lower than about 6000 K have slower rotations, while among stars with Tef > 6000 K we and moderate and fast rotations, though there are a few exceptions. We also show that stars with planets follow mostly the Krafts law, namely < J > / v rot. In this same idea we show that the rotation versus age relation of stars with planets follows, at least qualitatively, the Skumanich and Pace & Pasquini laws. The relation rotation versus orbital period also points for a very interesting result, with planet-harbouring stars with shorter orbital periods present rather enhanced rotation
Resumo:
Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.
Resumo:
Based on the accretion-induced magnetic field decay model, in which a frozen field and an incompressible fluid are assumed, we obtain the following results: (1) an analytic relation between the magnetic field and spin period, if the fastness parameter of the accretion disk is neglected (The evolutionary tracks of accreting neutron stars in the P-B diagram in our model are different from the equilibrium period lines when the influence of the fastness parameter is taken into account.); (2) the theoretical minimum spin period of an accreting neutron star is max(1.1ms (DeltaM/M(circle dot))(-1)R(6)(-5/14) I(45)(M/M(circle dot))(-1/2),1.1ms (M/M(circle dot))(-1/2) R(6)(17/14)), independent of the accretion rate (X-ray luminosity) but dependent on the total accretion mass, DeltaM; however, the minimum magnetic field depends on the accretion rate; (3) the magnetic field strength decreases faster with time than does the period.
Resumo:
The Dirac field is studied in a Lyra space-time background by means of the classical Schwinger Variational Principle. We obtain the equations of motion, establish the conservation laws, and get a scale relation relating the energy-momentum and spin tensors. Such scale relation is an intrinsic property for matter fields in Lyra background.