955 resultados para Arsenic
Resumo:
Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.
Resumo:
A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circum Pacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200 °C, the ore is dominantly cinnabar with Hg-Sb-As±Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70 ±3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological ancl geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.
Resumo:
Manganese nodules and manganese carbonate concretions occur in the upper 10-15 cm of the Recent sediments of Loch Fyne, Argyllshire in water depths of 180-200 m. The nodules are spherical, a few mm to 3 cm in diameter, and consist of a black, Mn-rich core and a thin, red, Fe-rich rim. The carbonate occurs as irregular concretions, 0.5-8 cm in size, and as a cement in irregular nodule and shell fragment aggregates. It partially replaces some nodule material and clastic silicate inclusions, but does not affect aragonitic and calcitic shell fragments. The nodules are approximately 75% pure oxides and contain 30% Mn and 4% Fe. In the cores, the principal mineral phase is todorokite, with a Mn/Fe ratio of 17. The rim consists of X-ray amorphous Fe and Mn oxides with a Mn/Fe ratio of 0.66. The cores are enriched, relative to Al, in K, Ba, Co, Mo, Ni and Sr while the rims contain more P, Ti, As, Pb, Y and Zn. The manganese carbonate has the composition (Mn47.7 Ca45.1 Mg7.2) CO3. Apart from Cu, all minor elements are excluded from significant substitution in the carbonate lattice. Manganese nodules and carbonates form diagenetically within the Recent sediments of Loch Fyne. This accounts for the high Mn/Fe ratios in the oxide phases and the abundance of manganese carbonate concretions. Mn concentrations in the interstitial waters of sediment cores are high (ca. 10 ppm) as also, by inference, are the dissolved carbonate concentrations.
Resumo:
Information on possible resource value of sea floor manganese nodule deposits in the eastern north Pacific has been obtained by a study of records and collections of the 1972 Sea Scope Expedition.
Resumo:
The book presents results of comprehensive geological investigations carried out during Cruise 8 of R/V "Vityaz-2" to the western part of the Black Sea in 1984. Systematic studies in the Black Sea during about hundred years have not weakened interest in the sea. Lithological and geochemical studies of sediments in estuarine areas of the Danube and the Kyzyl-Irmak rivers, as well as in adjacent parts of the deep sea and some other areas were the main aims of the cruise. Data on morphological structures of river fans, lithologic and chemical compositions of sediments in the fans and their areal distribution, forms of occurrence of chemical elements, role of organic matter and gases in sedimentation and diagenesis are given and discussed in the book.
Resumo:
Distribution, size, mineral, and chemical compositions of ferromanganese micronodules (FMMNs) and chemical composition of host sediments were examined in a series of red clay samples with ages from Eocene to the present at Ocean Drilling Program Leg 199, Site 1216, south of the Molokai Fracture Zone in the Central Pacific Basin. The number of FMMNs changed drastically throughout the 40-m-long red clay intervals. FMMNs are abundant in the upper 9 m of core, decrease between 9 and 25 meters below seafloor (mbsf) with depth, and are very rare from 30 to 40 mbsf. Chemical composition of FMMNs showed high Mn/Fe ratios and Ni and Cu contents and a distinct positive Ce anomaly because of the existence of buserite. This suggests that FMMNs in the red clay from 25 mbsf to the top of the cored interval were deposited continuously in an oxic diagenetic bottom environment. The red clay below 30 mbsf with higher Mn contents contains few FMMNs but abundant tiny Mn particles within brown silicates coated by Fe (oxy-hydro)oxides. This indicates that the mode of manganese deposition changed between 25 and 30 mbsf.
Resumo:
Interaction between young basaltic crust and seawater near the oceanic speading centers is one of the important processes affecting the chemical composition of the oceanic layer. The formation of metalliferous hydrothermal sediments results from this interaction. The importance of the interaction between seawater and basalt in determining the chemical composition of pore waters from sediments is well known. The influence of mineral solutions derived from this interaction on ocean water composition and the significant flux of some elements (e.g., Mn) are reported by Lyle (1976), Bogdanov et al. (1979), and others. Metal-rich sediments found in active zones of the ocean basins illustrate the influence of seawater-basalt interaction and its effect on the sedimentary cover in such areas. The role of hydrothermal activity and seawater circulation in basalts with regard to global geochemistry cycles has recently been demonstrated by Edmond, Measures, McDuff, McDuff et al. (1979), and Edmond, Measures, Mangum (1979). In the area of the Galapagos Spreading Center the interaction of sediments and solutions derived from interaction of seawater and basalt has resulted in the formation of hydrothermal mounds. The mounds are composed of manganese crusts and green clay interbedded and mixed with pelagic nannofossil ooze. These mounds are observed only in areas characterized by high heat flow (Honnorez, et al., 1981) and high hydrothermal activity.
Resumo:
Evaluar la contaminación por metales pesados en los ecosistemas permite conocer la capacidad bioindicativa de especies vegetativas. El objetivo fue determinar la concentración de metales pesados en Prosopis laevigata, Acacia spp. y Schinus molle bajo el efecto de usos suelo y temporalidad. El área se sitúa en la colindancia de los Municipios de Soledad de Graciano Sánchez y San Luis Potosí fragmentada por usos de suelo: agropecuario, comercio y servicios, residencial urbano y minero. Fueron tomadas muestras de hojas de las tres especies en las estaciones de verano, otoño, invierno y primavera y se evaluó la concentración de metales pesados a través de la técnica de ICP-MS. Los análisis estadísticos indicaron niveles de Aluminio (Al) > Cinc (Zn) > Plomo (Pb) > Cobre (Cu) > Titanio (Ti) > Vanadio (V) > Arsénico (As) > Cromo (Cr) > Cadmio (Cd) > Cobalto (Co). Los elementos Al, As, Cd, Cr, Pb y Ti presentaron niveles por encima del umbral normal en vegetación. El uso de suelo tuvo efecto significativo con Al, Ti, Cd, As y Pb; los árboles ubicados en los usos de suelo minero, comercio y servicios tuvieron la mayor concentración. La especie tuvo efecto significativo con Al y Pb siendo Acacia spp. el que presentó la mayor capacidad de acumulación. La temporada del año impactó significativamente en la acumulación de As, Cd, Co, Cu, Cr y Ti en las tres especies. La dinámica antropogénica de los diferentes usos de suelo genera partículas y residuos con metales pesados impactando en la disponibilidad y acumulación en las especies evaluadas. Se contribuye a evaluar el impacto ambiental en el sistema fragmentado recomendando dar continuidad a este tipo de estudios.