956 resultados para Arch bridges.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Preprint
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The relationship between research and learning and teaching represents what has been described as amongst the most intellectually tangled, managerially complex and politically contentious issues in mass higher education (Scott, 2005, p 53). Despite this, arguments that in order to achieve high quality scholarly outcomes, university teachers need to adopt an approach to teaching similar to that of research (founded upon academic rigour and evidence), has long been discussed in the literature. However, the practicalities of promoting an empirical and evidence-based approach to teaching in engineering education make dealing with the research / teaching nexus a somewhat challenging proposition. Using a phenomenographic approach, bringing together and applying the findings of a mixed methodological study, the workshop will adopt an activity based, interactive approach to encourage staff to consider the challenges and benefits of adopting an evidence-based approach to learning and teaching through the utilisation of research to inform their own practice. © 2009 Authors.
Resumo:
The effects of vehicle speed for Structural Health Monitoring (SHM) of bridges under operational conditions are studied in this paper. The moving vehicle is modelled as a single degree oscillator traversing a damaged beam at a constant speed. The bridge is modelled as simply supported Euler-Bernoulli beam with a breathing crack. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness of the bridge deck is modelled using road classification according to ISO 8606:1995(E). The stochastic description of the unevenness of the road surface is used as an aid to monitor the health of the structure in its operational condition. Numerical simulations are conducted considering the effects of changing vehicle speed with regards to cumulant based statistical damage detection parameters. The detection and calibration of damage at different levels is based on an algorithm dependent on responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. Sensitivity of calibration values is studied. The findings of this paper are important for establishing the expectations from different vehicle speeds on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring. The identification of bunching of these speed ranges provides guidelines for using the methodology developed in the paper.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This paper is an overview of the development and application of Computer Vision for the Structural Health
Monitoring (SHM) of Bridges. A brief explanation of SHM is provided, followed by a breakdown of the stages of computer
vision techniques separated into laboratory and field trials. Qualitative evaluations and comparison of these methods have been
provided along with the proposal of guidelines for new vision-based SHM systems.
Resumo:
Precast prestressed concrete panels have been used in bridge deck construction in Iowa and many other states. To investigate the performance of these panels at abutment or pier diaphragm locations for bridges with various skew angles, a research program involving both analytical and experimental aspects, is being conducted. This interim report presents the status of the research with respect to four tasks. Task 1 which involves a literature review and two surveys is essentially complete. Task 2 which involved field investigations of three Iowa bridges containing precast panel subdecks has been completed. Based on the findings of these investigations, future inspections are recommended to evaluate potential panel deterioration due to possible corrosion of the prestressed strands. Task 3 is the experimental program which has been established to monitor the behavior of five configurations of full scale composite deck slabs. Three dimensional test and instrumentation frameworks have been constructed to load and monitor the slab specimens. The first slab configuration representing an interior panel condition is being tested and preliminary results are presented for one of these tests in this interim report. Task 4 involves the analytical investigation of the experimental specimens. Finite element methods are being applied to analytically predict the behavior of the test specimens. The first test configuration of the interior panel condition has been analyzed for the same loads used in the laboratory, and the results are presented herein. Very good correlation between the analytical and experimental results has occurred.
Resumo:
The dynamic interaction of vehicles and bridges results in live loads being induced into bridges that are greater than the vehicle’s static weight. To limit this dynamic effect, the Iowa Department of Transportation (DOT) currently requires that permitted trucks slow to five miles per hour and span the roadway centerline when crossing bridges. However, this practice has other negative consequences such as the potential for crashes, impracticality for bridges with high traffic volumes, and higher fuel consumption. The main objective of this work was to provide information and guidance on the allowable speeds for permitted vehicles and loads on bridges .A field test program was implemented on five bridges (i.e., two steel girder bridges, two pre-stressed concrete girder bridges, and one concrete slab bridge) to investigate the dynamic response of bridges due to vehicle loadings. The important factors taken into account during the field tests included vehicle speed, entrance conditions, vehicle characteristics (i.e., empty dump truck, full dump truck, and semi-truck), and bridge geometric characteristics (i.e., long span and short span). Three entrance conditions were used: As-is and also Level 1 and Level 2, which simulated rough entrance conditions with a fabricated ramp placed 10 feet from the joint between the bridge end and approach slab and directly next to the joint, respectively. The researchers analyzed and utilized the field data to derive the dynamic impact factors (DIFs) for all gauges installed on each bridge under the different loading scenarios.