985 resultados para Aquatic communities
Resumo:
A great part of Uganda is endowed with water bodies in the forms of rivers and open water lakes. These bodies are never alone. They are either flanked or associated with plants, which are adapted to the wet conditions. They are so characteristic that they are part and parcel of the aquatic ecosystems. They occupy various positions depending on the amount of water in the relevant habitats.
Resumo:
Biodiversity values provide objective data and advice from which policy makes could assess the conservation options and determine optimal policies that would balance the needs of conservation with the socia-economic needs of the people in the area.
Resumo:
The results reported on were from a monitoring survey No. 10 undertaken between 23 rd and 29th April 2012 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, nine monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011, September 2011and the present one, in April 2012. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants biology and ecology of fishes and food webs fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness) During this survey, baseline assessment of the above mentioned studies was conducted in the reservoir behind the dam, including studies on algae, zooplankton and benthic macroinvertebrates which had been restrained since April 2008. The findings of baseline assessment of the reservoir are also contained in this report and are compared with those obtained from Transect 1(Upstream) and Transect 2 (Downstream).
Resumo:
Source of the Nile (SON) Cage Fish farm is located at Bugungu in Napoleon Gulf, northern Lake Victoria, near the headwaters of the River Nile. NaFIRRI has, through a Public-Private collaborative partnership with SON management, undertaken quarterly monitoring of the cage fish farm since 2011. The objective of the environment monitoring is to track possible environment and biological changes as a result of fish cage operations in the area. The agreed study areas cover selected physical-chemical parameters i.e. water depth, transparency, column temperature, dissolved oxygen, pH and conductivity; nutrient status; and biological parameters i.e. algae, zooplankton, macro-benthos and fish communities. The fourth quarter survey, which is the subject of this report was undertaken during December 2015. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. The present report presents field observations made for the fourth quarter survey undertaken in December 2015 and provides a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and the different aquatic biota in and around the fish cage site.
Resumo:
The purpose of the Socio-economic Baseline Survey of the Fishing Communities was to provide information on the fish landing beaches, people involved in fisheries, their livelihood activities and facilities available to them.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm have a collaborative arrangement with NaFIRRI to undertake quarterly environment monitoring of the cage site as is mandatory under the NEMA conditions. The monitoring surveys cover selected physical-chemical factors i.e. water column depth, water transparency, water column temperature, dissolved oxygen, pH and conductivity; nutrient status, algal and invertebrate communities (micro-invertebrates/zooplankton and macroinvertebrates/ macro-benthos) as well as fish community. The second quarter survey for the calendar year 2015, which is the subject of this report, was undertaken in June 2015. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota.
Resumo:
This monitoring survey No. 11 undertaken between 4th and 9th September 2012 is the second one to be conducted after completion of construction of Bujagali Hydropower Dam. Two pre-construction baseline surveys in April 2000 and April 2006 were conducted and during construction phase, eight monitoring surveys (September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011, September 2011) were conducted.
Resumo:
Control and management of Uganda fishery resources has been hindered by among other factors the multispecies nature of the resource and the characteristic behaviour of the fishing communities. Fishermen have both genuine and uncompromising attitudes as to why they carry out certain fishing technologies.All fishing activities aim at maximizing the catches or profits while others may fish on a small scale for subsistence. Sensitizing the fisherfolk on the appropriate fishing technologies, importance of a well regulated fishery exploitation and their participation in control and management of the resource would enhance or lead to increased and sustainable fish production. Socio-economics of fishing technologies were therefore examined using prepared questionnaires and reasons why the fishing communities behave the way they do established
Resumo:
There is increasing awareness that integrating gender into development frameworks is critical for effective implementation of development strategies. In working to alleviate rural poverty, the CGIAR Research Program on Aquatic Agricultural Systems (AAS) recognizes that “business as usual” gender integration approaches will not deliver lasting and widespread improvements in agricultural productivity, poverty reduction and food security. In response, AAS operationalized a gender transformative approach. The approach is informed by conceptual frameworks that explicitly recognize the potent influence of social relations on creating and perpetuating gender inequalities. In this way, AAS aims to address the underlying causes of rural poverty and gender inequality in Zambia’s Barotse Floodplain, where people rely extensively on riverine and wetland ecosystems for food and livelihood security. A central question guiding the research program is “How do social norms and gendered power relations influence agricultural development outcomes?” The findings presented in this report provide insights that help answer this question. The report presents a review of literature relevant to livelihoods, ecosystem services, and gender and social relations in Zambia, with a specific focus on Western Province, where AAS is currently implemented. It also presents a synthesis of findings of a social and gender analysis conducted in 2013 in 10 focal communities situated in and around the Barotse Floodplain.
Resumo:
The results reported on were from a monitoring survey No.7 undertaken between 4 th and 7th September 2010 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, six monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010 and the present one, in September 2010. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: I. water quality determinants 2. biology and ecology of fishes and food webs 3. fish stock and fish catch including economic aspects of catch and 4. sanitation/vector studies (bilharzias and river blindness)
Resumo:
The aquatic ecosystem of the Upper Victoria Nile is part of a wider complex of water bodies (lakes and rivers) in Uganda that is of immense socioeconomic importance, especially the fisheries. A source of food, income, energy, irrigation and drinking water, the protection, sustainable use and management of the Upper Victoria Nile water resources are vital to Uganda's economy. The Upper Victoria Nile,due to its abundance of socio-economic benefits,provides a significant contribution to Uganda's economy. The fisheries contribute to the sector as a major source of the export earnings, second to coffee (NEMA,1996), sustain small fishing villages,provide income and generally improve nutrition. Apart from the socio-economic significance of the fisheries,the riverine features of the Upper Victoria Nile, especially its hydropower potential,distinguish this river from the rest of the aquatic ecosystems in the country.
Resumo:
The purpose of this present study therefore is to provide and update the AES Nile Power EIA baseline information on the ecology of the river ecosystem prior to the construction of the dam. The study is intended to provide a basis for evaluating the impact of the project on the river environment, the biological resources associated with it and fisheries socia-economics and the vector/sanitation status. This report presents the findings of the first sampling regime which was conducted between the dates of 6th-13th April 2006 and compared with the AESNP Environmental Impact Assessment findings of the second quarter carried out during 5th-14th April 2000.
Resumo:
Bujagali hydropower dam construction is now completed and a reservoir behind the dam has been created, extending all the way up to Kalange-Makwanzi, an upstream transects. During the 10th monitoring survey-April 2012, a third transect was established in the mid of the reservoir where it runs up to 30 m deep and sampled similarly as at the two original sampling transects, Kalange-Makwanzi and Buyala-Kikubamutwe for comparative purposes. This monitoring survey No. 12 undertaken between 25th and 30th April 2013 is the third one to be conducted after completion of construction of Bujagali Hydropower Dam. Two pre-construction baseline surveys in April 2000 and April 2006 were conducted and during construction phase, eight monitoring surveys (September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011, September 2011) were conducted. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants, biology and ecology of fishes and food webs, fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness). In the post-construction monitoring surveys, the assessments of algae, zooplankton and benthic macro-invertebrates which had been restrained since April 2008 were also included.
Resumo:
The survey covered by this report was undertaken between 3rd and 7th April 2009 as a follow-up on the during construction surveys. Two pre-construction baseline surveys were undertaken in April 2000 and April 2006. During the construction phase which started in 2007, three surveys including the current one have been undertaken i.e. in September 2007, April 2008 and the present one, in April 2009. Unlike in all previous surveys in which monitoring was conducted at one transect upstream and three downstream transects, in the current survey, two transects, one upstream and the other,downstream of the BHPP were sampled with emphasis on the following aspects: 1. water quality determinants 2. biology and ecology of fishes and food webs 3. fish stock and fish catch including economic aspects of catch and 4. sanitation/vector studies (bilharzias and river blindness)
Resumo:
The status of fish stocks in a water body at any one time is a function of several factors affecting the production of fish in that water body. These include: total number (abundance) and biomass(weight) present, growth (size and age), recruitment (the quantity of fish entering the fishery) including reproduction, mortality which is caused by fishing or natural causes, Other indirect factors of major importance to the status of the stocks include production factors (water quality and availability of natural food for fish), the life history parameters of the different species making up the stocks (e.g. sex ratios, condition of the fish, reproductive potential (i.e. fecundity) etc), Changes in fish stocks do occur when any of the above listed factors directly influence aspects of growth, reproduction and mortality and therefore, numbers and standing stock (biomass). In the exploited fisheries, major research concerns regarding stocks relate to the listed factors especially: estimates of stock abundance/biomass, the quantity of fish being caught,where the fish are caught, which species are caught (relative abundance)when the fish are caught, how the fish are caught. The balance between stock abundance and amount of fish caught provides the basis for intervention. Due to the diverse characteristics of the physical water environment, fishes are in general, not evenly distributed throughout a water body. Shallow and vegetated areas tend to support higher abundance and diversity of fish species. In addition, seasonal variations in fish abundance are so strong that fluctuations in catch have to be expected at fish landings.