966 resultados para App predictions
Resumo:
The dynamic theological behaviour of gamma-irradiated 12.8 wt% poly(vinyl alcohol) (PVA), 12.8 wt% poly(vinyl pyrrolidone) (PVP), and a blend of 8 wt% PVA and 4.8 wt% PVP aqueous solutions have been studied pre- and post-gelation. The non-irradiated solutions displayed theological behaviour typical of dilute to semi-dilute polymer solutions, with the complex viscosity being independent of the frequency and shear rate (i.e. Newtonian behaviour) over the range of frequencies tested and the loss modulus G(omega) and storage modulus G(omega) being nearly proportional to omega and omega(2) respectively. After a set of doses of gamma-radiation, the magnitudes of the dynamic moduli G'(omega) and G(omega) increased as the absorbed dose increased, with notable differences between the two homopolymers and the blend. The stages of gelation were effectively monitored by means of dynamic theological measurements, allowing the possible mechanisms of network formation to be elucidated. The doses required for gelation of the PVA, PVP, and blend samples, determined on the basis of the Winter and Chambon criteria for gelation, were found to be 12 kGy for the 12.8 wt% PVA, 4 kGy for the 12.8 wt% PVP, and 5 kGy for the 8 wt% PVA/4.8 wt% PVP solutions. The unexpected lower gelation dose demonstrated by the blend sample, compared with predictions based on the blend composition, and the associated gelation mechanism are also discussed.
The relation between the transversus abdominis muscles, sacroilac joint mechanics, and low back pain
Resumo:
Study Design. Two abdominal muscle patterns were tested in the same group of individuals, and their effects were compared in relation to sacroiliac joint laxity. One pattern was contraction of the transversus abdominis, Independently of the other abdominals; the other was a bracing action that used all the lateral abdominal muscles. Objectives. To demonstrate the biomechanical effect of the exercise for the transversus abdominis known to be effective in low back pain. Summary of Background Data. Drawing in the abdominal wall is a specific exercise for the transversus abdominis muscle (in cocontraction with the multifidus), which is used in the treatment of back pain. Clinical effectiveness has been demonstrated to be a reduction of 3-year recurrence from 75% to 35%. To the authors' best knowledge, there is not yet in vivo proof of the biomechanical effect of this specific exercise. This study of a biomechanical model on the mechanics of the sacroiliac joint, however, predicted a significant effect of transversus abdominis muscle force. Methods. Thirteen healthy individuals who could perform the test patterns were included. Sacroiliac joint laxity values were recorded with study participants in the prone position during the two abdominal muscle patterns. The values were recorded by means of Doppler Imaging of vibrations. Simultaneous electromyographic recordings and ultrasound imaging were used to verify the two muscle patterns. Results. The range of sacroiliac joint laxity values observed in this study was comparable with levels found in earlier studies of healthy individuals. These values decreased significantly in all individuals during both muscle patterns (P < 0.001). The independent transversus abdominis contraction decreased sacroiliac joint laxity (or rather increased sacroiliac joint stiffness) to a significantly greater degree than the general abdominal exercise pat-tern (P < 0.0260). Conclusions. Contraction of the transversus abdominis significantly decreases the laxity of the sacroiliac joint. This decrease in laxity is larger than that caused by a bracing action using all the lateral abdominal muscles. These findings are in line with the authors' biomechanical model predictions and support the use of independent transversus abdominis contractions for the treatment of low back pain.
Resumo:
Given the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of alpha-chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the ostuolyte-mediated stabilization of the a-chymotrypsin homodimer, we have used models based on binding interactions (transfer-free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer-free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar-mediated stabilization of the alpha-chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the a-chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Resumo:
The conventional convection-dispersion model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. The extension of this model to include nonlinear kinetics and zonal heterogeneity of the liver is not straightforward and requires numerical solution of partial differential equation, which is not available in standard nonlinear regression analysis software. In this paper, we describe an alternative compartmental model representation of hepatic disposition (including elimination). The model allows the use of standard software for data analysis and accurately describes the outflow concentration-time profile for a vascular marker after bolus injection into the liver. In an evaluation of a number of different compartmental models, the most accurate model required eight vascular compartments, two of them with back mixing. In addition, the model includes two adjacent secondary vascular compartments to describe the tail section of the concentration-time profile for a reference marker. The model has the added flexibility of being easy to modify to model various enzyme distributions and nonlinear elimination. Model predictions of F, MTT, CV2, and concentration-time profile as well as parameter estimates for experimental data of an eliminated solute (palmitate) are comparable to those for the extended convection-dispersion model.
Resumo:
The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl4)induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)- acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P-app) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl4-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P-app or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of H2S --> SH + H have been investigated quantum mechanically by the Lanczos homogeneous filter diagonalization method using a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). Resonance energies, widths (rates), and product state distributions have been obtained. Both dissociation rates and product state distributions of SH show, strong fluctuations, indicating that the dissociation of H2S is essentially irregular. Statistical analysis of neighboring level spacing and width distributions also confirms this behavior. The dissociation rates and product state distributions are compared to the predictions of quantum phase space theory.
Resumo:
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (H2O)-H-1 and (H2O)-H-2 revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(v)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307,63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E-o = +315 mV, pH 8).
Resumo:
We assayed the pattern of mitoehondrial DNA evolution in the live bearing, seagrass specialist pipefish, Urocampus carinirostris, in eastern Australia. These life history attributes were predicted to result in strong phylogeographic structure in U. carinirostris. Phylogenetic analysis of cytochrome b sequences detected two monophyletic mtDNA clades that differed by 8.69% sequence divergence - a large level of intraspecific divergence for a marine fish. The geographical distribution of clades was non-random and resembled clinal secondary intergradation over a 130-km stretch of coastline. Contrary to phylogeographic predictions, this large phylogeographic break does not occur across a traditionally recognised biogeographic boundary. Analyses of historical demography suggested that individuals belonging to the most widespread clade underwent a population expansion from a small refuge population during the Pleistocene.
Resumo:
This paper outlines research on the processes taking place within the coal mineral matter at high temperatures and development of the relationship between ash fusion temperatures (AFT) and phase equilibria of the coal ash slags. A new thermodynamic database for the Al-Ca-Fe-O-Si system developed by the author was used in conjunction with the thermodynamic computer package F*A*C*T for these purposes. In addition, high temperature experimental studies were undertaken that involved heat treatment and quenching of the ash cones followed by the analyses using different techniques. The study provided new information on the processes taking place during AFT test and demonstrated the validity of the AFTs predictions with F*A*C*T. Examples of practical applications of the AFT prediction method are given in the paper. The results of this study are important not only for the AFT predictions, but also in general for the application of phase equilibrium science to the characterisation of the coal mineral matter interactions at high temperature. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Two experiments were conducted to test predictions derived from social identity/self-categorization theory concerning the role of group norms in attitude-behavior consistency. In Experiment 1, 160 students who could be classified as having a more or less certain target attitude were exposed to attitude congruent versus incongruent normative support from a relevant reference group (own university) under conditions of low versus high group salience. Experiment 2 was very similar in design and methodology (N=180), but a different correlate of attitude accessibility was used (an experimental manipulation of repeated expression), the target attitude was changed, and the reference group was gender. Across the 2 experiments there was consistent support for the hypothesis that participants would behave more in accordance with their attitudes when they received normative support for, rather than opposition to, their original attitude from a relevant reference group (i.e., their ingroup, not an outgroup). There was slightly weaker support for the second hypothesis that this effect would be stronger under high-than low-salience conditions. The third hypothesis (see Fazio, 1986), that attitude certainty and repeated expression of the attitude would strengthen attitude-behavior consistency, was well supported, as was the expectation that accessibility effects would be independent of reference group norm effects on attitude-behavior consistency.
Resumo:
The kinetics of drop penetration were studied by filming single drops of several different fluids (water, PEG200, PEG600, and HPC solutions) as they penetrated into loosely packed beds of glass ballotini, lactose, zinc oxide, and titanium dioxide powders. Measured times ranged from 0.45 to 126 s and depended on the powder particle size,viscosity, surface tensions, and contact angle. The experimental drop penetration times were compared to existing theoretical predictions by M. Denesuk et al. (J. Colloid Interface Sci. 158, 114, 1993) and S. Middleman (Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, 1995) but did not agree. Loosely packed powder beds tend to have a heterogeneous bed structure containing large macrovoids which do not participate in liquid flow but are included implicitly in the existing approach to estimating powder pore size. A new two-phase model was proposed where the total volume of the macrovoids was assumed to be the difference between the bed porosity and the tap porosity. A new parameter, the effective porosity (epsilon)eff, was defined as the tap porosity multiplied by the fraction of pores that terminate at a macrovoid and are effectively blocked pores. The improved drop penetration model was much more successful at estimating the drop penetration time on all powders and the predicted times were generally within an order of magnitude of the experimental results. (C) 2002 Elsevier Science (USA).
Resumo:
The present study examined the utility of a stress and coping model of adaptation to a homeless shelter among homeless adolescents. Seventy-eight homeless adolescents were interviewed and completed self-administered scales at Time 1 (day of shelter entry) and Time 2 (day of discharge). The mean duration of stay at the shelter was 7.23 days (SD = 7.01). Predictors included appraisal (threat and self-efficacy), coping resources, and coping strategies (productive, nonproductive, and reference to others coping). Adjustment outcomes were Time I measures of global distress, physical health, clinician-and youthworker- rated social adjustment, and externalizing behavior and Time 2 youthworker-rated social adjustment and goal achievement. Results of hierarchical regression analyses indicated that after controlling for the effects of relevant background variables (number of other shelters visited, sexual, emotional, and physical abuse), measures of coping resources, appraisal, and coping strategies evidenced distinct relations with measures of adjustment in ways consistent with the model's predictions with few exceptions. In cross-sectional analyses better Time I adjustment was related to reports of higher levels of coping resources, self-efficacy beliefs, and productive coping strategies, and reports of lower levels of threat appraisal and nonproductive coping strategies. Prospective analyses showed a link between reports of higher levels of reference to others coping strategies and greater goal achievement and, unexpectedly, an association between lower self-efficacy beliefs and better Time 2 youthworker-rated social adjustment. Hence, whereas prospective analyses provide only limited support for the use of a stress and coping model in explaining the adjustment of homeless adolescents to a crisis shelter, cross-sectional findings provide stronger support.
Resumo:
Yield strength (YS) ageing curves have been modelled for A356 and A357 aluminium casting alloys below the solvus temperature of the main hardening precipitate. Predictions are based on the Shercliff and Ashby methodology (Acta MetaH. Mater. 38 (1990) 1789) for wrought alloys. Differences between strengthening in wrought and cast Al-Si-Mg alloys are considered. A Brinell hardness to YS conversion incorporating strain hardening has been established to enable YS ageing curves to be predicted with reduced experimental effort. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents results on the simulation of the solid state sintering of copper wires using Monte Carlo techniques based on elements of lattice theory and cellular automata. The initial structure is superimposed onto a triangular, two-dimensional lattice, where each lattice site corresponds to either an atom or vacancy. The number of vacancies varies with the simulation temperature, while a cluster of vacancies is a pore. To simulate sintering, lattice sites are picked at random and reoriented in terms of an atomistic model governing mass transport. The probability that an atom has sufficient energy to jump to a vacant lattice site is related to the jump frequency, and hence the diffusion coefficient, while the probability that an atomic jump will be accepted is related to the change in energy of the system as a result of the jump, as determined by the change in the number of nearest neighbours. The jump frequency is also used to relate model time, measured in Monte Carlo Steps, to the actual sintering time. The model incorporates bulk, grain boundary and surface diffusion terms and includes vacancy annihilation on the grain boundaries. The predictions of the model were found to be consistent with experimental data, both in terms of the microstructural evolution and in terms of the sintering time. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper reviews the current knowledge and understanding of martensitic transformations in ceramics - the tetragonal to monoclinic transformation in zirconia in particular. This martensitic transformation is the key to transformation toughening in zirconia ceramics. A very considerable body of experimental data on the characteristics of this transformation is now available. In addition, theoretical predictions can be made using the phenomenological theory of martensitic transformations. As the paper will illustrate, the phenomenological theory is capable of explaining all the reported microstructural and crystallographic features of the transformation in zirconia and in some other ceramic systems. Hence the theory, supported by experiment, can be used with considerable confidence to provide the quantitative data that is essential for developing a credible, comprehensive understanding of the transformation toughening process. A critical feature in transformation toughening is the shape strain that accompanies the transformation. This shape strain, or nucleation strain, determines whether or not the stress-induced martensitic transformation can occur at the tip of a potentially dangerous crack. If transformation does take place, then it is the net transformation strain left behind in the transformed region that provides toughening by hindering crack growth. The fracture mechanics based models for transformation toughening, therefore, depend on having a full understanding of the characteristics of the martensitic transformation and, in particular, on being able to specify both these strains. A review of the development of the models for transformation toughening shows that their refinement and improvement over the last couple of decades has been largely a result of the inclusion of more of the characteristics of the stress-induced martensitic transformation. The paper advances an improved model for the stress-induced martensitic transformation and the strains resulting from the transformation. This model, which separates the nucleation strain from the subsequent net transformation strain, is shown to be superior to any of the constitutive models currently available. (C) 2002 Elsevier Science Ltd. All rights reserved.