924 resultados para Angular Momentum Operator Cartesian Spherical Polar
Resumo:
The ability of Escherichia coli O157:H7 to colonize the intestinal epithelia is dependent on the expression of intimin and other adhesins. The chromosome of E. coli O157:H7 carries two loci encoding long polar fimbriae (LPF). These fimbriae mediate adherence to epithelial cells and are associated with colonization of the intestine. In order to increase our knowledge about the conditions controlling their expression and their role in colonization of an animal model, the environmental cues that promote expression of lpf genes and the role of E. coli O157:H7 LPF in intestinal colonization of lambs were investigated. We found that expression of lpf1 was regulated in response to growth phase, osmolarity, and pH; that lpf2 transcription was stimulated during late exponential growth and iron depletion; and that LPF impacts the ability of E. coli O157:H7 to persist in the intestine of infected 6-week-old lambs.
Resumo:
The final warming date of the polar vortex is a key component of Southern Hemisphere stratospheric and tropospheric variability in spring and summer. We examine the effect of external forcings on Southern Hemisphere final warming date, and the sensitivity of any projected changes to model representation of the stratosphere. Final warming date is calculated using a temperature-based diagnostic for ensembles of high- and low-top CMIP5 models, under the CMIP5 historical, RCP4.5, and RCP8.5 forcing scenarios. The final warming date in the models is generally too late in comparison with those from reanalyses: around two weeks too late in the low-top ensemble, and around one week too late in the high-top ensemble. Ensemble Empirical Mode Decomposition (EEMD) is used to analyse past and future change in final warming date. Both the low- and high-top ensemble show characteristic behaviour expected in response to changes in greenhouse gas and stratospheric ozone concentrations. In both ensembles, under both scenarios, an increase in final warming date is seen between 1850 and 2100, with the latest dates occurring in the early twenty-first century, associated with the minimum in stratospheric ozone concentrations in this period. However, this response is more pronounced in the high-top ensemble. The high-top models show a delay in final warming date in RCP8.5 that is not produced by the low-top models, which are shown to be less responsive to greenhouse gas forcing. This suggests that it may be necessary to use stratosphere resolving models to accurately predict Southern Hemisphere surface climate change.
Resumo:
The analysis presented in this paper suggests that the larger heating over the boreal forest in the spring and summer, as contrasted with weaker heating over the adjacent tundra, results in a preferred position of the polar front along the northern edge of the boreal forest. This positioning is well documented in the literature (see, for example, Bryson, 1966; Barry and Hare, 1974; Kreps and Barry, 1970). This heating results from the lower albedo of the boreal forest which is not compensated by an increase in transpiration, even with the larger leaf area index of the forest. The warmer temperatures are mixed upward by the deep boundary layer over the forest and mesoscale circulations which result from the patchiness of heating associated with the heterogeneous landscapes of the forest. Thus in contrast to previous assumptions in which the arctic front position in the summer determines the northern limit of the boreal tree line, our study suggests the boreal forest itself significantly influences the preferred position of the front. This conclusion reinforces the findings of Bonan et al. (1992) and Foley et al. (1994) on the important role of boreal forest-tundra interactions with climate.
Resumo:
Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankyla ̈ (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Nin ̃o Southern Oscillation, is linked with layer cloud properties.
Resumo:
In this paper we study Dirichlet convolution with a given arithmetical function f as a linear mapping 'f that sends a sequence (an) to (bn) where bn = Pdjn f(d)an=d.
We investigate when this is a bounded operator on l2 and ¯nd the operator norm. Of particular interest is the case f(n) = n¡® for its connection to the Riemann zeta
function on the line 1, 'f is bounded with k'f k = ³(®). For the unbounded case, we show that 'f : M2 ! M2 where M2 is the subset of l2 of multiplicative sequences, for many f 2 M2. Consequently, we study the `quasi'-norm sup kak = T a 2M2 k'fak kak
for large T, which measures the `size' of 'f on M2. For the f(n) = n¡® case, we show this quasi-norm has a striking resemblance to the conjectured maximal order of
j³(® + iT )j for ® > 12 .
Resumo:
This study considers the strength of the Northern Hemisphere Holton-Tan effect (HTE) in terms of the phase alignment of the quasi-biennial oscillation (QBO) with respect to the annual cycle. Using the ERA-40 Reanalysis, it is found that the early winter (Nov–Dec) and late winter (Feb–Mar) relation between QBO phase and the strength of the stratospheric polar vortex is optimized for subsets of the 44-year record that are chosen on the basis of the seasonality of QBO phase transitions at the 30 hPa level. The timing of phase transitions serves as a proxy for changes in the vertical structure of the QBO over the whole depth of the tropical stratosphere. The statistical significance of the Nov–Dec (Feb–Mar) HTE is greatest when 30 hPa QBO phase transitions occur 9–14 (4–9) months prior to the January of the NH winter in question. This suggests that there exists for both early and late winter a vertical structure of tropical stratospheric winds that is most effective at influencing the interannual variability of the polar vortex, and that an early (late) winter HTE is associated with an early (late) progression of QBO phase towards that structure. It is also shown that the seasonality of QBO phase transitions at 30 hPa varies on a decadal timescale, with transitions during the first half of the calendar year being relatively more common during the first half of the tropical radiosonde wind record. Combining these two results suggests that decadal changes in HTE strength could result from the changing seasonality of QBO phase transitions. Citation: Anstey, J. A., and T. G. Shepherd (2008), Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions, Geophys. Res. Lett., 35, L22810, doi:10.1029/2008GL035721.
Resumo:
It is well established that variations in polar stratospheric winds can affect mesospheric temperatures through changes in the filtering of gravity wave fluxes, which drive a residual circulation in the mesosphere. The Canadian Middle Atmosphere Model(CMAM) is used to examine this vertical coupling mechanism in the context of the mesospheric response to the Antarctic ozone hole. It is found that the response differs significantly between late spring and early summer, because of a changing balance between the competing effects of parametrised gravity wavedrag (GWD)and changes in resolved wave drag local to the mesosphere. In late spring, the strengthened stratospheric westerlies arising from the ozone hole lead to reduced eastward GWD in the mesosphere and a warming of the polar mesosphere, just as in the well known mesospheric response to sudden stratospheric warmings, but with an opposite sign.In early summer, with easterly flow revailing over most of the polar stratosphere,the strengthened easterly wind shear within the mesosphere arising from the west ward GWD anomaly induces a positive resolved wave drag anomaly through baroclinic instability. The polar cooling induced by this process completely dominates the upper mesospheric response to the ozone hole in early summer. Consequences for the past and future evolution of noctilucent clouds are discussed
Resumo:
Southern Hemisphere (SH) polar mesospheric clouds (PMCs), also known as noctilucent clouds, have been observed to be more variable and, in general, dimmer than their Northern Hemisphere (NH) counterparts. The precise cause of these hemispheric differences is not well understood. This paper focuses on one aspect of the hemispheric differences: the timing of the PMC season onset. Observations from the Aeronomy of Ice in the Mesosphere satellite indicate that in recent years the date on which the PMC season begins varies much more in the SH than in the NH. Using the Canadian Middle Atmosphere Model, we show that the generation of sufficiently low temperatures necessary for cloud formation in the SH summer polar mesosphere is perturbed by year‐to‐year variations in the timing of the late‐spring breakdown of the SH stratospheric polar vortex. These stratospheric variations, which persist until the end of December, influence the propagation of gravity waves up to the mesosphere. This adds a stratospheric control to the temperatures in the polar mesopause region during early summer, which causes the onset of PMCs to vary from one year to another. This effect is much stronger in the SH than in the NH because the breakdown of the polar vortex occurs much later in the SH, closer in time to the PMC season.
Resumo:
The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 6 0.07 K decade21 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 Kdecade21 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces awestward acceleration of the lower-stratosphericwind over theAntarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade21 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (;70 hPa) increases by almost 2% decade21, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.
Resumo:
Energy fluxes for polar regions are examined for two 30-year periods, representing the end of the 20th and 21st centuries, using data from high resolution simulations with the ECHAM5 climate model. The net radiation to space for the present climate agrees well with data from the Clouds and the Earth’s Radiant Energy System (CERES) over the northern polar region but shows an underestimation in planetary albedo for the southern polar region. This suggests there are systematic errors in the atmospheric circulation or in the net surface energy fluxes in the southern polar region. The simulation of the future climate is based on the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The total energy transport is broadly the same for the two 30 year periods, but there is an increase in the moist energy transport of the order of 6 W m−2 and a corresponding reduction in the dry static energy. For the southern polar region the proportion of moist energy transport is larger and the dry static energy correspondingly smaller for both periods. The results suggest a possible mechanism for the warming of the Arctic that is discussed. Changes between the 20th and 21st centuries in the northern polar region show the net ocean surface radiation flux in summer increases ~18W m−2 (24%). For the southern polar region the response is different as there is a decrease in surface solar radiation. We suggest that this is caused by changes in cloudiness associated with the poleward migration of the storm tracks.
Resumo:
We analyze here the polar stratospheric temperatures in an ensemble of three 150-year integrations of the Canadian Middle Atmosphere Model (CMAM), an interactive chemistry-climate model which simulates ozone depletion and recovery, as well as climate change. A key motivation is to understand possible mechanisms for the observed trend in the extent of conditions favourable for polar stratospheric cloud (PSC) formation in the Arctic winter lower stratosphere. We find that in the Antarctic winter lower stratosphere, the low temperature extremes required for PSC formation increase in the model as ozone is depleted, but remain steady through the twenty-first century as the warming from ozone recovery roughly balances the cooling from climate change. Thus, ozone depletion itself plays a major role in the Antarctic trends in low temperature extremes. The model trend in low temperature extremes in the Arctic through the latter half of the twentieth century is weaker and less statistically robust than the observed trend. It is not projected to continue into the future. Ozone depletion in the Arctic is weaker in the CMAM than in observations, which may account for the weak past trend in low temperature extremes. In the future, radiative cooling in the Arctic winter due to climate change is more than compensated by an increase in dynamically driven downwelling over the pole.
Resumo:
Observational and numerical evidence suggest that variability in the extratropical stratospheric circulation has a demonstrable impact on tropospheric variability on intraseasonal time scales. In this study, it is demonstrated that the amplitude of the observed tropospheric response to vacillations in the stratospheric flow is quantitatively similar to the zonal-mean balanced response to the anomalous wave forcing at stratospheric levels. It is further demonstrated that the persistence of the tropospheric response is consistent with the impact of anomalous diabatic heating in the polar stratosphere as stratospheric temperatures relax to climatology. The results contradict previous studies that suggest that variations in stratospheric wave drag are too weak to account for the attendant changes in the tropospheric flow. However, the results also reveal that stratospheric processes alone cannot account for the observed meridional redistribution of momentum within the troposphere.
Resumo:
Patches of ionization are common in the polar ionosphere where their motion and associated density gradients give variable disturbances to High Frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a “tongue” of ionization (TOI).
Resumo:
We investigate the sensitivity of Northern Hemisphere polar ozone recovery to a scenario in which there is rapid loss of Arctic summer sea ice in the first half of the 21st century. The issue is addressed by coupling a chemistry climate model to an ocean general circulation model and performing simulations of ozone recovery with, and without, an external perturbation designed to cause a rapid and complete loss of summertime Arctic sea ice. Under this extreme perturbation, the stratospheric response takes the form of a springtime polar cooling which is dynamical rather than radiative in origin, and is caused by reduced wave forcing from the troposphere. The response lags the onset of the sea-ice perturbation by about one decade and lasts for more than two decades, and is associated with an enhanced weakening of the North Atlantic meridional overturning circulation. The stratospheric dynamical response leads to a 10 DU reduction in polar column ozone, which is statistically robust. While this represents a modest loss, it has the potential to induce a delay of roughly one decade in Arctic ozone recovery estimates made in the 2006 Scientific Assessment of Ozone Depletion.