1000 resultados para Angelika River
Resumo:
During the period of the post-glacial transgression maximum (PGTM), there was a huge trumpet estuary in the modern Changjiang River Delta area. The location and the shape of the Paleo-Changjiang River Estuary (PCRE) were much different from those of the present Changjiang River Estuary. The study on the change of characteristics of tidal wave in the Changjiang River mouth area since the PGTM can help to understand better the dynamic development of the Changjiang River Delta. The course curves of tidal level and tidal current velocity during a single tidal cycle for 35 points are calculated, and characteristics of tidal waves in the PCRE and its adjacent area are compared with those of tidal waves in the modern Changjiang River mouth area. The results show that the tidal waves within the PCRE and in its adjacent area during the period of the PGTM belonged to standing wave or a mixture of standing wave and progressive wave. Since then, the tidal wave in the Changjiang River mouth become gradually to be progressive wave with the PCRE being filled and the Changjiang River mouth shifting southeastwards.
Resumo:
The impact of the Huanghe (Yellow) River outflows on its estuary was investigated with river gauging and shipboard hydrographic observations. The river flux has been decreasing dramatically; the discharges of water and sediment in the 1990s dropped to 27.4% and 31.9% of those in the 1950s, respectively, resulting in frequent and lengthy events of downstream channel dry-up since the 1970s. There were accumulatively 897 zero-flow days during the 1990s in the river course below the Lijin Hydrological Station, 100 km upstream from the river mouth, which is 82.4% of that in 1972. As freshwater input decreases, river-borne nutrients to the estuarine increased significantly. Concentration of dissolved inorganic nitrogen (DIN) in the 1990s was four times of that in 1950s. Changes in amount and content of the riverine inputs have greatly affected the estuarine ecosystem. Over the past several decades, sea surface temperature and salinity in the estuary and its adjacent waters increased and their distribution pattern altered in response to the reduction of freshwater inflow. The distribution of and seasonal succession in nutrient concentrations in the surface layer have also changed with a shift of river outlet and the decrease in riverine nutrient loads. Furthermore, deterioration of estuarine ecosystem by less river input has decreased primary productivity in the deltaic region waters, and in turn depressed the fishery. (C) 2008 Published by Elsevier Ltd.
Resumo:
Numerous cores and dating show the Yangtze River has accumulated about 1.16 x 10(12) t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated (similar to 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from similar to 40 in thickness between the 20 and 30 m water depth to < 1-2 in between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 x 10(11) m(3), equivalent to similar to 5.4 x 10(11) t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 x 10(12) t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as fanning and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0-2 cm) were 5-10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C-26-C-33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC(15) to nC(22) compounds. Long-chain (> C-20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (< C-20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk delta(CTOCTOC)-C-13. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.
Resumo:
Hydrological statistical data, remote sensing images, and bathymetric charts were used to study the recent evolution of the Huanghe (Yellow) River delta under human-induced interventions. It was clear that water and sediment discharge from the Huanghe River had dropped rapidly since 1970, particularly after 1986. The water and sediment discharges for the period of 1986-2000 were found to have been reduced to only 29.2% and 31.2% of those in the period of 1950-69. This was caused by human factors in the upper and middle reaches of the Huanghe River, including water diversion, damming and reservoir construction, and water and soil conservation. Based on the results from visual interpretation of processed Landsat (MSS or TMJETM+) images dated from 1976 to 2001 and two digital elevation models generated from bathymetric charts surveyed in 1976 and 1992, we found that human-induced reduction of water and sediment discharge led to coastline retrogradation, with the maximum mean recession rate of -0.51 km yr-1 over the period of 1976-98, and seabed erosion beyond the -20 m isobath between 1976 and 1992. Other impacts of human activities on the recent evolution of the Huanghe River delta, including tidal flats shrinking, artificial coastline increasing, land surface sinking and so on, were also analyzed. We found that: (i) the whole delta, including subaerial and subaqueous, has turned from a highly constructive period to a destructive phase; (ii) channelization and dredging were two of the main causes of delta destruction; (iii) land loss in the Huanghe River delta caused by submersion will be increased in the near future; (iv) the Huanghe River delta was becoming more fragile and susceptible to natural hazards.
Resumo:
This paper addresses the recent (1970s-1990s) processes of river mouth bar formation, riverbed aggradation and distributary migration in the Huanghe River mouth area, in the light of station-based monitoring, field measurements and remote sensing interpretation. The results show that the morphological changes of the river mouth bar have been closely associated with the largely reduced fluvial discharge and sediment load. Landforrn development such as bar progradation occurred in two phases, i.e. before and after 1989, which correspond to faster and lower bar growth rates, respectively. Fast riverbed aggradation in the mouth channel was strongly related to river mouth bar progradation. During 1976-1996, about 2.8% of the total sediment loads were deposited in the river channel on the upper to middle delta. Therefore, the river water level rose by a few meters from 1984 to 1996. The frequent distributary channel migration, which switched the radial channel pattern into the SE-directed pattern in the mid-1980s, was linked with mouth bar formation. Marine conditions also constrain seaward bar progradation. Furthermore, the history of river mouth bar formation reflects human impacts, such as dredging and dyking in order to stabilize the coastal area. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A predominant sigmoidal clinoform deposit extends from the Yangtze River mouth southwards 800 kin along the Chinese coast. This clinoform is thickest (similar to 40m) between the 20 and 30 m isobaths and progressively thins offshore, reaching water depths of 60 and 90 m and distances up to 100 km offshore. Clay mineral, heavy metal, geochemical and grain-size analyses indicate that the Yangtze River is the primary source for this longshore-transported clinoform deposit. Pb-210 chronologies show the highest accumulation rates (> 3 cm/yr) occur immediately adjacent to the Yangtze subaqueous delta (north of 30 degrees N), decreasing southward alongshore and eastward offshore. The interaction of strong tides, waves, the China Coastal Current, winter storms, and offshore upwelling appear to have played important roles in trapping most Yangtze-derived sediment on the inner shelf and transporting it to the south. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
AMS(14)C dating and grain-size analysis for Core PC-6, located in the middle of a mud area on the inner shelf of the East China Sea (ECS), were used to rebuild the Holocene history of the East Asian winter monsoon (EAWM). The 7.5-m core recorded the history of environmental changes during the postglacial transgression. The core's mud section (the upper 450 cm) has been formed mainly by suspended sediment delivered from the Yangtze River mouth by the ECS Winter Coastal Current (ECSWCC) since 7.6 kyr BP. Using a mathematical method called "grain size vs. standard deviatioW', we can divide the Core PC-6's grain-size distribution into two populations at about 28 mu m. The fine population (< 28 mu m) is considered to be transported by the ECSWCC as suspended loads. Content of the fine population changes little and represents a stable sedimentary environment in accord with the present situation. Thus, variation of mean grain-size from the fine population would reflect the strength of ECSWCC, which is mainly controlled by the East Asian winter monsoon. Abrupt increasing mean grain size in the mud section is inferred to be transported by sudden strengthened ECSWCC, which was caused by the strengthened EAWM. Thus, the high resolution mean grain-size variation might serve as a proxy for reconstruction of the EAWM. A good correlation between sunspot change and the mean grain-size of suspended fine population suggests that one of the primary controls on centennial- to decadal-scale changes of the EAWM in the past 8 ka is the variations of sun irradiance, i.e., the EAWM will increase in intensity when the number of sunspots decreases. Spectral analyses of the mean grain-size time series of Core PC-6 show statistically significant periodicities centering on 2463, 1368, 128, 106, 100, 88-91, 7678, and 70-72 years. The EAWM and the East Asian summer monsoon (EASM) agree with each other well on these cycles, and the East Asian Monsoon (EAM) and the Indian Monsoon also share in concurrent cycles in Holocene, which are in accord with the changes of the sun irradiance. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Field measurements of salinity, wind and river discharge and numerical simulations of hydrodynamics from 1978 to 1984 are used to investigate the dynamics of the buoyant plume off the Pearl River Estuary (PRE), China during summer. The studies have shown that there are four major horizontal buoyant plume types in summer: Offshore Bulge Spreading (Type I), West Alongshore Spreading (Type II), East Offshore Spreading (Type III), and Symmetrical Alongshore Spreading (Type IV). River mouth conditions, winds and ambient coastal currents have inter-influences to the transport processes of the buoyant plume. It is found that all of the four types are surface-advected plumes by analysing the vertical characteristic of the plumes, and the monthly variations of the river discharge affect the plume size dominantly. The correlation coefficient between the PRE plume size and the river discharge reaches 0.85 during the high river discharge season. A wind strength index has been introduced to examine the wind effect. It is confirmed that winds play a significant role in forming the plume morphology. The alongshore wind stress and the coastal currents determine the alongshore plume spreading. The impact of the ambient currents such as Dongsha Current and South China Sea (SCS) Warm Current on the plume off the shelf has also assessed. The present study has demonstrated that both the river discharge and wind conditions affect the plume evolution.
Resumo:
MASNUM wave-tide-circulation coupled numerical model (MASNUM coupled model, hereinafter) is developed based on the Princeton Ocean Model (POM). Both POM and MASNUM coupled model are applied in the numerical simulation of the upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. The upwelling mechanisms are analyzed from the viewpoint of tide, and a new mechanism is proposed. The study suggests that the tidally inducing mechanism of the upwelling includes two dynamic aspects: the barotropic and the baroclinic process. On the one hand, the residual currents induced by barotropic tides converge near the seabed, and upwelling is generated to maintain mass conservation. The climbing of the residual currents along the sea bottom slope also contributes to the upwelling. On the other hand, tidal mixing plays a very important role in inducing the upwelling in the baroclinic sea circumstances. Strong tidal mixing leads to conspicuous front in the coastal waters. The considerable horizontal density gradient across the front elicits a secondary circulation clinging to the tidal front, and the upwelling branch appears near the frontal zone. Numerical experiments are designed to determine the importance of tide in inducing the upwelling. The results indicate that tide is a key and dominant inducement of the upwelling. Experiments also show that coupling calculation of the four main tidal constituents(M-2, S-2, K-1, and O-1), rather than dealing with the single M-2 constituent, improves the modeling precision of the barotropic tide-induced upwelling.
Resumo:
From November 2002 to 2006, five cruises were undertaken in the Yangtze River Estuary and the adjacent East China Sea to compare the nutrient concentrations, ratios and potential nutrient limitation of phytoplankton growth before and after impoundment (June 2003) of the Three Gorges Dam (TGD). Concentrations of dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and total nitrogen (TN) exhibited an increasing trend from 2002 to 2006. In contrast, total phosphorus (TP) concentration exhibited a decreasing trend. The mean concentrations of DIN, SRP, and TN in the total study area increased from 21.4 mu M, 0.9 mu M, and 41.8 mu M in 2002 to 37.5 mu M, 1.3 mu M. and 82.2 mu M in 2006, respectively. while TP decreased from 2.1 mu M to 1.7 mu M. The concentration of dissolved reactive silica (DRSi) had no major fluctuations and the differences were not significant. The mean concentration of DRSi in the total study area ranged from 52.5 to 92.3 mu M. The Si:N ratio decreased significantly from 2.7 in 2002 to 1.3 in 2006, while TN: TP ratio increased from 22.1 to 80.3. The area of potential P limitation of phytoplankton growth expanded after 2003 and potential Si limitation appeared in 2005 and 2006. Potential P limitation mainly occurred in an area of salinity less than 30 after 2003, while potential Si limitation occurred where the salinity was greater than 30. By comparison with historical data, the concentrations of nitrate and SRP in this upper estuary during November 1980-2006 increased obviously after impoundment of TGD but DRSi decreased. Meanwhile, the ratios of N:P, Si:N and Si:P decreased obviously. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The nitrogen isotopic composition of dissolved nitrate (delta N-15-NO3-) in surface water of the Yangtze River estuary was determined in four seasons of 2006. delta N-15-NO3- ranged from 0.4 parts per thousand to 6.5 parts per thousand and varied with seasons and geographic regions, reflecting the dynamics of nitrogen cycling in the estuarine ecosystem. delta N-15-NO3- was markedly lower in February than in other seasons and exhibited conservative mixing, which was probably attributed to the NO3- being sourced from the atmospheric deposition and agricultural fertilizer. In the upper estuary, the influence of riverine inputs was important during all surveys. in the turbidity maximum zone, nitrification was found with nitrate depleted in N-15 in May, whereas denitrification resulting in heavy delta N-15-NO3- played an important role in August. More enriched delta N-15-NO3- values coinciding with losses of nitrate concentrations based on the conservative mixing model were found in the adjacent marine area in May, and may reflect obvious phytoplankton assimilation of dissolved nitrate. In this manner, delta N-15-NO3- may be a sensitive indicator of nitrogen sources and biogeochemical processing existing in this estuary in conjunction with the variations of dissolved nitrate and other environmental factors. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Nutrient dynamics and its influence on the distribution of chlorophyll-a in the upwelling area of the Changjiang (Yangtze) River estuary were investigated in the spring (May) and summer (August) of 2004. In the spring, upwelling was apparent in the region of 122 degrees 20'-123 degrees 00' E, 31 degrees 00'-32 degrees 00' N and was associated with low temperature (16-21 degrees C), high salinity (24-33 practical salinity units [psu]), and low dissolved oxygen (2.5-6.0 mg L-1) in the upper 10 m of the water column. The spring upwelling increased the mixed-layer phosphate, nitrate, and silicate concentrations to roughly 1, 15, and 15 mu mol L-1, respectively, and improved the light transparency in the euphotic zone. This improvement in phytoplankton growing conditions was followed by an increase in chlorophyll-a concentrations. The summer upwelling was weaker and occurred over a smaller geographical area (122 degrees 20'-123 degrees 00' E, 31 degrees 15'-31 degrees 50' N). Strongly influenced by turbid Changjiang diluted water (CDW), it had little impact on the upper 10 m of the water column but instead increased nutrient concentrations at greater depths. The high concentration of particulates in the CDW reduced light transmission in the upper 10 m and, hence, limited phytoplankton growth throughout the water column. Chlorophyll-a concentrations in the summer upwelling area were roughly an order of magnitude lower than in the spring. Water clarity, as influenced by the CDW, appears to be the principal factor limiting the impact of upwelling on phytoplankton biomass in this area.
Resumo:
N, P and SiO3-Si in the Changjiang mainstream and its major tributaries and lakes were investigated in the dry season from November to December, 1997, and in the flood season in August and October, 1998. An even distribution of SiO3-Si was found along the Changjiang River. However, the concentrations of total nitrogen, total dissolved nitrogen, dissolved inorganic nitrogen, nitrate and total phosphorus, total particulate phosphorus increased notably in the upper reaches, which reflected an increasing impact from human activities. Those concentrations in the middle and lower reaches of the Changjiang River were relatively constant. Dissolved N was the major form of N and the particulate P was the major form of P in the Changjiang River. The molar ratio of dissolved N to dissolved P was extremely high (192.5-317.5), while that of the particulate form was low (5.6-37.7). High N/P ratio reflected a significant input of anthropogenic N such as N from precipitation and N lost from water and soil etc. Dissolved N and P was in a quasi-equilibrium state in the process from precipitate to the river. In the turbid river water, light limitation, rather than P limitation, seemed more likely to be a controlling factor for the growth of phytoplankton. A positive linear correlationship between the concentration of dissolved N and the river's runoff was found, mainly in the upper reaches, which was related to the non-point sources of N. Over the past decades, N concentration has greatly increased, but the change of P concentration was not as significant as N. The nutrient fluxes of the Changjiang mainstream and tributaries were estimated, and the result showed that the nutrient fluxes were mainly controlled by the runoff, of which more than a half came from the tributaries. These investigations carried out before water storage of the Three Gorges Dam will supply a scientific base for studying the influences of the Three Gorges Dam on the ecology and environment of the Changjiang River and its estuary.