921 resultados para Amines -- chemistry
Resumo:
A mild and convenient synthesis of substituted α-methylene--valerolactones was achieved by SN2 nucleophilic substitution of the acetates of the Baylis-Hillman adducts with acetyl acetone followed by one-pot saponification of the ester, reduction of the keto group and subsequent intramolecular ring closure in aqueous medium.
Resumo:
A methanolic ammonia-mediated alternate, easy and practical stereoselective synthesis of allyl amines from the acetyl derivatives of Baylis-Hillman adducts is described.
Resumo:
A reinvestigation into the reaction between ammonium acetate and the acetyl derivatives of Baylis-Hillman adducts has led us to conclude that the products obtained are tertiary and secondary allyl amines and not the primary allyl amines. The unambiguous assignment of the structure of products using chemical and spectroscopic methods is described
Resumo:
The synthesis of several 1-(2-cyano-3-aryl-allyl)-3-aryl-urea(thiourea) constructed from the reaction between allyl amines generated from Baylis-Hillman acetates and substituted isocyanates and isothiocyanates has been described. Further their cyclization in the presence of a base led to the formation of 5-arylmethyl-4-imino-3-aryl-3,4-dihydro-1H-pyrimidin-2-ones. All compounds were tested for their antibacterial activity. Few of the compounds showed superior activity or were equipotent to the standard antibacterial agents.
Resumo:
An alternate approach to densely substituted quinolines from the products of SN2 nucleophilic substitution reaction between the acetyl derivatives of the Baylis-Hillman adducts obtained from 2-nitrobenzaldehydes and the carbonyl group containing carbon nucleophiles is described. Treatment of these compounds with SnCl2, trigger a tandem reaction wherein reduction of the nitro group is followed by a remarkably regioselective intramolecular cyclization and subsequent dehydrogenation to afford 4-(substituted vinyl)-quinolines.
Resumo:
Ureides are compounds, which essentially incorporate urea as a substructural component either in open or cyclic form. Ureido derivatives are one of the oldest classes of bioactives, widely used as antiinfective agents. Several of these compounds, including aminoquinuride, aminocarbalide, imidurea, cloflucarban, nitrofurazone, urosulfan, viomycin are used in clinical situations. One of the ureides, the triclocarban is compulsorily used as antibacterial agent in cleansing and disinfecting solutions in hospital, household, cosmetics, toys, textile and plastics. It disables the activity of ENR, an enzyme vital for building the cell wall of the bacteria and fungus. Besides, the ureido-penicillins in clinical use there have been several ureido-lactam derivatives which have been reported to exhibit significant antibacterial activity. A urea containing dipeptide TAN-1057A isolated from Flexibacter spp. has potent bioactivity against MRSA. The metal complexes of sulphonyl ureido derivatives are effective antifungal agents by inhibiting the activity of phosphomannose isomerase, a key enzyme in the biosynthesis of yeast cell walls. There have been number of ureides including the cyclic ureas which are potent HIV protease inhibitors and display significant anti-HIV activity. The urea derivative, merimepodip that has been derived using structure based design, is potent inhibitor of IMPDH and is active against Hepatitis-C infection. This review will primarily focus on the significant work reported for this class of compounds including design, synthesis and biological activity.
Resumo:
The applications of the primary allyl amines afforded by the acetyl derivative of Baylis-Hillman adducts of acrylate for the synthesis of heterocycles using robust reactions are described. In the first strategy a one-pot synthesis of 5-benzyl-4(3H)-pyrimidinones have been achieved via N-formylation of the amines in the presence of neat formamide followed by ammonium formate-mediated cyclization. These pyrimidinones have been demonstrated to be excellent precursor to the 4-pyridinamine derivatives. In the second strategy the synthesis of 2-benzylidene-2,3-dihydro-pyrrolizin-1-ones have been accomplished via treatment of allyl amine with dimethoxyfuran followed by saponification and PPA-mediated intramolecular cyclization.