994 resultados para Akademik Sergey Vavilov
Resumo:
Excitation functions have been measured for different projectile-like fragments produced in Al-27(F-19,x)y reactions at incident energies from 110.25 to 118.75 MeV in 250 keV steps. Strong cross section fluctuations of the excitation functions are observed. The cross- correlation coefficients of the excitation functions for different atomic number Z and for different scattering angle theta(cm) have been deduced. These coefficients are much larger than the statistical theoretical calculated ones. This indicates that there are strong correlations between different exit channels in the dissipative heavy ion Collision of Al-27(F-19,x)y.
Resumo:
The differential cross sections for elastic scattering products of F-17 on Pb-208 have been measured. The angular dispersion plots of ln(d sigma/d theta) versus theta(2) are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.
Resumo:
The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles, viz. angulax dispersion plot, shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 due to its exotic structure, while no turning point was observed for O-17. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering angular dispersion of weakly bound nuclei with halo or skin structure as compared with that of the stable nuclei. Therefore the fact that the turning point of the elastic scattering angular dispersion plot appears at small angle for weakly bound nuclei can be used as a new probe to investigate the halo and skin phenomenon.
Resumo:
The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 having exotic structure, while no turning point was observed in the O-17 elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon.
Resumo:
Excitation functions are measured for different charge products of the F-19+(27) Al reaction in the laboratory energy range 110.25-118.75MeV in steps of 250keV at theta(lab) = 57 degrees, 31 degrees and -29 degrees. The coherence rotation angular velocities of the intermediate dinuclear systems formed in the reaction are extracted from the cross section energy autocorrelation functions. Compared the angular velocity extracted from the experimental data with the ones deduced from the sticking limit, it is indicated that a larger deformation of the intermediate dinuclear system exists.
Resumo:
The differential cross sections of F-17 and O-17 elastic scattering products on Pb-208 have been measured at the Radioactive Ion Beam Line at Lanzhou (RIBLL). Two angular dispersion plots of ln(d sigma/d theta) versus theta 2 are obtained from the angular distribution of the elastic scattering differential cross sections. The angular dispersion plot exhibits a clear turning point for F-17 in the range of small scattering angles 6 degrees-20 degrees due to its exotic structure, but for O-17, the turning point is not observed in the same angular range. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data supports the above conclusion that there is an exotic behaviour of the angular dispersion plot of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the turning point of the angular dispersion plot appears at small angle for weakly bound nuclei with halo or skin structure, and can be used as a new probe to investigate the halo and skin phenomena of weakly bound nuclei.
Resumo:
Excitation functions of the reaction products B, C, N, O, F and Ne emitted from the dissipative reaction of (19) F+(27) Al have been measured at incident energies from 110.25MeV to 118.75MeV in steps of 250keV. The moments of inertia of the intermediate dinuclear system formed in the reaction are extracted from the energy autocorrelation functions of the products. Comparing the moment of inertia extracted from the experimental data with the calculated one by using the sticking limit, it indicates that the formed dinuclear system has a large deformation in the reaction process.
Resumo:
Six deep-sea proteolytic bacteria taken from Aleutian margin sediments were screened; one of them produced a cold-adapted neutral halophilic protease. These bacteria belong to Pseudoalteromonas spp., which were identified by the 16S rDNA sequence. Of the six proteases produced, two were neutral cold-adapted proteases that showed their optimal activity at pH 7-8 and at temperature close to 35 degrees C, and the other four were alkaline proteases that showed their optimal activity at pH 9 and at temperature of 40-45 degrees C. The neutral cold-adapted protease E1 showed its optimal activity at a sodium chloride concentration of 2 M, whereas the activity of the other five proteases decreased at elevated sodium chloride concentrations. Protease E1 was purified to electrophoretic homogeneity and its molecular mass was 34 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of protease E1 was determined to be 32,411 Da by mass spectrometric analysis. Phenylmethyl sulfonylfluoride (PMSF) did not inhibit the activity of this protease, whereas it was partially inhibited by ethylenediaminetetra-acetic acid sodium salt (EDTA-Na). De novo amino acid sequencing proved protease E1 to be a novel protein.
Resumo:
Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Korea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scan-sonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure detected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%-30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these structures, gas hydrate could not form due to low gas concentration.
Resumo:
The piano's role in art song repertoire has evolved from a modest one during its formative years to the versatility, complexity and creativity found in the twentieth-century. The art song repertoire of the twentieth century is vast and has secured the reputation for being the most diverse, innovative, illustrative, atmospheric and colorful in all of art song literature. Within this time period, there are compositions that reach back to the romantic works of nineteenth century, others which combine old and new traditions, and finally those which adopt new means and new ends. In choosing the material for this project, I have focused on compositions with uniquely challenging and unusual piano accompaniments in order to achieve a balance between well- known and rarely performed works, as well as those pieces that combine various languages and styles. Selections range from Claude Debussy, Richard Strauss, Sergey Rachmaninoff, Ralph Vaughan Williams, Roger Quilter, Francis Poulenc, Fernando Obradors, and Joaquin Rodrigo to composers such as Samuel Barber, Marc Blitzstein, Dominick Argento, William Bolcom, and John Duke, including arrangements of traditional spirituals by Harry T. Burleigh and Florence B. Price, all of which helped to establish the American Art Song. My objective is to trace the development of the twentieth-century art song from the late Romantic Period through nationalistitrends to works which show the influences of jazz and folk elements. The two CD's for this dissertation recording project are available on compact discs which can be found in the Digital Repository at the University of Maryland (DRUM). The performers were Daniel Armstrong, baritone, Giles Herman, baritone, Thomas Glenn, tenor, Valerie Yinzant, soprano, Aaron Odom, tenor, Jennifer Royal, soprano, Kenneth Harmon, tenor, Karen Sorenson, soprano and Maxim Ivanov, baritone.
Resumo:
Abstract Let F be a reduced irreducible root system and R be a commutative ring. Further, let G(F,R) be a Chevalley group of type F over R and E(F,R) be its elementary subgroup. We prove that if the rank of F is at least 2 and the Bass-Serre dimension of R is finite, then the quotient G(F,R)/E(F,R) is nilpotent by abelian. In particular, when G(F,R) is simply connected the quotient K1(F,R)=G(F,R)/E(F,R) is nilpotent. This result was previously established by Bak for the series A1 and by Hazrat for C1 and D1. As in the above papers we use the localisation-completion method of Bak, with some technical simplifications.
Resumo:
An analytical treatment of optical transmission through periodically nanosructured metal films capable of supporting surface-plasmon polaritons is presented. The optical properties of such metal films are governed by surface polariton behavior in a periodic surface structure forming a surface polaritonic crystal. Due to different configurations of the electromagnetic field of surface polariton modes, only states of even Brillouin zones are responsible for the optical transmission enhancement at normal incidence. The transmission enhancement is related to photon tunneling via resonant states of surface polariton Bloch modes in which the energy buildup takes place. Surface polariton states of at least one of the film interfaces contribute to the transmission resonance which occurs due to tunnel coupling between photons and surface polaritons on the opposite interfaces. Under double-resonance conditions, resonant tunneling between surface polariton states of both interfaces is achieved, which leads to further enhancement of the transmission efficiency. The double-resonance conditions occur not only in the case of a film in symmetric environment but can also be engineered for a film on a substrate. Light tunneling via surface polariton states can take place directly through a structured metal film and does not necessarily require holes in a film.
Resumo:
The excitation of surface plasmon-polariton (SPP) waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element method simulations. Two excitation geometries have been investigated where SPPs are excited outside or inside the dielectric tapered region adjoint to the waveguide. The dependence of the efficiency of the SPP guided mode excitation on the taper opening angle has been measured and modeled. Single-mode guiding and strong lateral mode confinement of dielectric-loaded SPP waveguide modes have been characterized with the near-field measurements and compared to the effective-index method model.
Resumo:
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Resumo:
We model how student choices to rush a fraternity, and fraternity admission choices, interact with signals firms receive about student productivities to determine labor-market outcomes. The fraternity and students value wages and fraternity socializing values. We provide sufficient conditions under which, in equilibrium, most members have intermediate abilities: weak students apply, but are rejected unless they have high socializing values, while most able students do not apply to avoid taint from association with weaker members.