808 resultados para Agglomerative Hierarchical Clustering
Resumo:
Objectives: The objectives of this study were to examine the extent of clustering of smoking, high levels of television watching, overweight, and high blood pressure among adolescents and whether this clustering varies by socioeconomic position and Cognitive function. Methods: This study was a cross-sectional analysis of 3613 (1742 females) participants of an Australian birth cohort who were examined at age 14. Results: Three hundred fifty-three (9.8%) of the participants had co-occurrence of three or four risk factors. Risk factors clustered in these adolescents with a greater number of participants than would be predicted by assumptions of independence having no risk factors and three or four risk factors. The extent of clustering tended to be greater in those from lower-income families and among those with lower cognitive function. The age-adjusted ratio of observed to expected cooccurrence of three or four risk factors was 2.70 (95% confidence interval [Cl], 1.80-4.06) among those from low-income families and 1.70 (95% Cl, 1.34-2.16) among those from more affluent families. The ratio among those with low Raven's scores (nonverbal reasoning) was 2.36 (95% Cl, 1.69-3.30) and among those with higher scores was 1.51 (95% Cl, 1.19-1.92); similar results for the WRAT 3 score (reading ability) were 2.69 (95% Cl, 1.85-3.94) and 1.68 (95% Cl, 1.34-2.11). Clustering did not differ by sex. Conclusion: Among adolescents, coronary heart disease risk factors cluster, and there is some evidence that this clustering is greater among those from families with low income and those who have lower cognitive function.
Resumo:
Motivation: The clustering of gene profiles across some experimental conditions of interest contributes significantly to the elucidation of unknown gene function, the validation of gene discoveries and the interpretation of biological processes. However, this clustering problem is not straightforward as the profiles of the genes are not all independently distributed and the expression levels may have been obtained from an experimental design involving replicated arrays. Ignoring the dependence between the gene profiles and the structure of the replicated data can result in important sources of variability in the experiments being overlooked in the analysis, with the consequent possibility of misleading inferences being made. We propose a random-effects model that provides a unified approach to the clustering of genes with correlated expression levels measured in a wide variety of experimental situations. Our model is an extension of the normal mixture model to account for the correlations between the gene profiles and to enable covariate information to be incorporated into the clustering process. Hence the model is applicable to longitudinal studies with or without replication, for example, time-course experiments by using time as a covariate, and to cross-sectional experiments by using categorical covariates to represent the different experimental classes. Results: We show that our random-effects model can be fitted by maximum likelihood via the EM algorithm for which the E(expectation) and M(maximization) steps can be implemented in closed form. Hence our model can be fitted deterministically without the need for time-consuming Monte Carlo approximations. The effectiveness of our model-based procedure for the clustering of correlated gene profiles is demonstrated on three real datasets, representing typical microarray experimental designs, covering time-course, repeated-measurement and cross-sectional data. In these examples, relevant clusters of the genes are obtained, which are supported by existing gene-function annotation. A synthetic dataset is considered too.
Resumo:
With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the Ordered VA-File (OVA-File) based on the VA-file. OVA-File is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k Nearest Neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-File, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named Ordered VA-LOW (OVA-LOW) based on the proposed OVA-File. OVA-LOW first chooses possible OVA-Slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-Slices to work out approximate kNN. The number of possible OVA-Slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and iDistance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance.
Resumo:
The paper investigates a Bayesian hierarchical model for the analysis of categorical longitudinal data from a large social survey of immigrants to Australia. Data for each subject are observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and the explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia.
Resumo:
Quality of life has been shown to be poor among people living with chronic hepatitis C However, it is not clear how this relates to the presence of symptoms and their severity. The aim of this study was to describe the typology of a broad array of symptoms that were attributed to hepatitis C virus (HCV) infection. Phase I used qualitative methods to identify symptoms. In Phase 2, 188 treatment-naive people living with HCV participated in a quantitative survey. The most prevalent symptom was physical tiredness (86%) followed by irritability (75%), depression (70%), mental tiredness (70%), and abdominal pain (68%). Temporal clustering of symptoms was reported in 62% of participants. Principal components analysis identified four symptom clusters: neuropsychiatric (mental tiredness, poor concentration, forgetfulness, depression, irritability, physical tiredness, and sleep problems); gastrointestinal (day sweats, nausea, food intolerance, night sweats, abdominal pain, poor appetite, and diarrhea); algesic (joint pain, muscle pain, and general body pain); and dysesthetic (noise sensitivity, light sensitivity, skin. problems, and headaches). These data demonstrate that symptoms are prevalent in treatment-naive people with HCV and support the hypothesis that symptom clustering occurs.
Resumo:
This study offers a new perspective on the nature, content and structure of perceived service quality. The Nordic and Gap schools of quality assessment are integrated with recent advances in the literature to develop and test a multidimensional, hierarchical scale. The scale provides a framework for assessing service quality within a high involvement, high contact, ongoing service environment. Empirical results indicated that service quality conforms to a multidimensional, hierarchical structure consisting of four primary dimensions, which in turn comprise nine sub-dimensions. The results obtained extend our understanding of service evaluation and have important implications for service providers seeking to improve the quality of the services they provide.
Resumo:
In this paper we present an efficient k-Means clustering algorithm for two dimensional data. The proposed algorithm re-organizes dataset into a form of nested binary tree*. Data items are compared at each node with only two nearest means with respect to each dimension and assigned to the one that has the closer mean. The main intuition of our research is as follows: We build the nested binary tree. Then we scan the data in raster order by in-order traversal of the tree. Lastly we compare data item at each node to the only two nearest means to assign the value to the intendant cluster. In this way we are able to save the computational cost significantly by reducing the number of comparisons with means and also by the least use to Euclidian distance formula. Our results showed that our method can perform clustering operation much faster than the classical ones. © Springer-Verlag Berlin Heidelberg 2005
Resumo:
This paper incorporates hierarchical structure into the neoclassical theory of the firm. Firms are hierarchical in two respects: the organization of workers in production and the wage structure. The firm’s hierarchy is represented as the sector of a circle, where the radius represents the hierarchy’s height, the width of the sector represents the breadth of the hierarchy at a given height, and the angle of the sector represents span of control for any given supervisor. A perfectly competitive firm then chooses height and width, as well as capital inputs, in order to maximize profit. We analyze the short run and long run impact of changes in scale economies, input substitutability and input and output prices on the firm’s hierarchical structure. We find that the firm unambiguously becomes more hierarchical as the specialization of its workers increases or as its output price increases relative to input prices. The effect of changes in scale economies is contingent on the output price. The model also brings forth an analysis of wage inequality within the firm, which is found to be independent of technological considerations, and only depends on the firm’s wage schedule.