934 resultados para Aerospace industries
Resumo:
Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green’s Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.
Resumo:
PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280-300 degree Centigrade use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.
Resumo:
Additive Manufacturing durch Aufschmelzen von Metallpulvern hat sich auf breiter Front als Herstellverfahren, auch für Endprodukte, etabliert. Besonders für die Variante des Selective Laser Melting (SLM) sind Anwendungen in der Zahntechnik bereits weit verbreitet und der Einsatz in sensitiven Branchen wie der Luftfahrt ist in greifbare Nähe gerückt. Deshalb werden auch vermehrt Anstrengungen unternommen, um bisher nicht verarbeitete Materialien zu qualifizieren. Dies sind vorzugsweise Nicht-Eisen- und Edelmetalle, die sowohl eine sehr hohe Reflektivität als auch eine sehr gute Wärmeleitfähigkeit aufweisen – beides Eigenschaften, die die Beherrschung des Laser-Schmelzprozesses erschweren und nur kleine Prozessfenster zulassen. Die Arbeitsgruppe SLM des Lehr- und Forschungsgebietes Hochleistungsverfahren der Fertigungstechnik hat sich unter der Randbedingung einer kleinen und mit geringer Laserleistung ausgestatteten SLM Maschine der Aufgabe gewidmet und am Beispiel von Silber die Parameterfelder für Einzelspuren und wenig komplexe Geometrien systematisch untersucht. Die Arbeiten wurden von FEM Simulationen begleitet und durch metallographische Untersuchungen verifiziert. Die Ergebnisse bilden die Grundlage zur schnellen Parameterfindung bei komplexen Geometrien und bei Veränderungen der Zusammensetzung, wie sie bei zukünftigen Legierungen zu erwarten sind. Die Ergebnisse werden exemplarisch auf unterschiedliche Geometrien angewandt und entsprechende Bauteile gezeigt.
Resumo:
In this paper we follow a theory-based approach to study the assimilation of compliance software in highly regulated multinational enterprises. These relatively new software products support the automation of controls which are associated with mandatory compliance requirements. We use institutional and success factor theories to explain the assimilation of compliance software. A framework for analyzing the assimilation of Access Control Systems (ACS), a special type of compliance software, is developed and used to reflect the experiences obtained in four in-depth case studies. One result is that coercive, mimetic, and normative pressures significantly effect ACS assimilation. On the other hand, quality aspects have only a moderate impact at the beginning of the assimilation process, in later phases the impact may increase if performance and improvement objectives become more relevant. In addition, it turns out that position of the enterprises and compatibility heavily influence the assimilation process.
Resumo:
An Advanced Planning System (APS) offers support at all planning levels along the supply chain while observing limited resources. We consider an APS for process industries (e.g. chemical and pharmaceutical industries) consisting of the modules network design (for long–term decisions), supply network planning (for medium–term decisions), and detailed production scheduling (for short–term decisions). For each module, we outline the decision problem, discuss the specifi cs of process industries, and review state–of–the–art solution approaches. For the module detailed production scheduling, a new solution approach is proposed in the case of batch production, which can solve much larger practical problems than the methods known thus far. The new approach decomposes detailed production scheduling for batch production into batching and batch scheduling. The batching problem converts the primary requirements for products into individual batches, where the work load is to be minimized. We formulate the batching problem as a nonlinear mixed–integer program and transform it into a linear mixed–binary program of moderate size, which can be solved by standard software. The batch scheduling problem allocates the batches to scarce resources such as processing units, workers, and intermediate storage facilities, where some regular objective function like the makespan is to be minimized. The batch scheduling problem is modelled as a resource–constrained project scheduling problem, which can be solved by an efficient truncated branch–and–bound algorithm developed recently. The performance of the new solution procedures for batching and batch scheduling is demonstrated by solving several instances of a case study from process industries.
Resumo:
The paper deals with batch scheduling problems in process industries where final products arise from several successive chemical or physical transformations of raw materials using multi–purpose equipment. In batch production mode, the total requirements of intermediate and final products are partitioned into batches. The production start of a batch at a given level requires the availability of all input products. We consider the problem of scheduling the production of given batches such that the makespan is minimized. Constraints like minimum and maximum time lags between successive production levels, sequence–dependent facility setup times, finite intermediate storages, production breaks, and time–varying manpower contribute to the complexity of this problem. We propose a new solution approach using models and methods of resource–constrained project scheduling, which (approximately) solves problems of industrial size within a reasonable amount of time.
Resumo:
This dissertation addresses the risk of lung cancer associated with occupational exposures in the petroleum refining and petrochemical industries. Earlier epidemiologic studies of this association did not adjust for cigarette smoking or have specific exposure classifications. The Texas EXposure Assessment System (TEXAS) was developed with data from a population-based, case-comparison study conducted in five southeast Texas counties between 1976 and 1980. The Texas Exposure Assessment System uses job and process categories developed by the American Petroleum Institute, as well as time-oriented variables to identify high risk groups.^ An industry-wide, increased risk for lung cancer was associated with jobs having low-level hydrocarbon exposure that also include other occupational inhalation exposures (OR = 2.0--adjusted for smoking and latency effects). The prohibition of cigarette smoking for jobs with high-level hydrocarbon exposure might explain part of the increased risk for jobs with low-level hydrocarbon exposures. Asbestos exposure comprises a large part of the risk associated with jobs having other inhalation exposures besides hydrocarbons. Workers in petroleum refineries were not shown to have an increased, occupational risk for lung cancer. The increased risk for lung cancer among petrochemical workers (OR = 3.1--smoking and latency adjusted) is associated with all jobs that involve other inhalation exposure characteristics (not only low-level hydrocarbon exposures). Findings for contract workers and workers exposed to specific chemicals were inconclusive although some hypotheses for future research were identified.^ The study results demonstrate that the predominant risk for lung cancer is due to cigarette smoking (OR = 9.8). Cigarette smoking accounts for 86.5% of the incident lung cancer cases within the study area. Workers in the petroleum industry smoke significantly less than persons employed in other industries (p << 0.001). Only 2.2% of the incident lung cancer cases may be attributed to petroleum industry jobs; lifestyle factors (e.g., nutrition) may be associated with the balance of the cases. The results from this study also suggest possible high risk time periods (OR = 3.9--smoking and occupation adjusted). Artifacts in time-oriented findings may result because of the latency interval for lung cancer, secular peaks in age-, sex-specific incidence rates, or periods of hazardous exposures in the petroleum industry. ^