999 resultados para Advanced Land Imager
Resumo:
Lisäpainokset: 2. p. 1880 (299 s.).
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.
Resumo:
The time course of heart rate and body weight alterations during the natural period of dormancy were determined in active feeding and dormant juvenile specimens of Megalobulimus sanctipauli. In both groups, heart rate markedly decreased during the first 40 days of dormancy, tending to stabilize thereafter. This time period coincided with the decrease in environmental temperature during autumn-winter. At the end of the dormancy period, surviving active feeding and dormant snails showed a significant decrease in heart rate which, however, was significantly greater in the latter group. Total body weight decreased concomitantly with heart rate in dormant snails but remained constant in active feeding snails. Body hydration induced significant increases in weight and heart rate in surviving dormant snails. Feeding following hydration promoted a new significant increase in heart rate but not in weight. These results indicate that the decrease in heart rate observed in juvenile specimens of M. sanctipauli during dormancy may be due to at least three factors: 1) decrease in environmental temperature during autumn-winter, 2) starvation which leads to the depletion of endogenous fuel reserves and to a probable decrease in hemolymph nutrient levels, and 3) dehydration which leads to a probable decrease in hemolymph volume and venous return and/or to an increase in hemolymph osmolarity.
Resumo:
Colorectal cancer is one of the most frequent malignancies in humans and an important cause of cancer death. Metastatic colorectal cancer remains incurable with available systemic therapeutic options. The most active cytotoxic drug against this malignancy, the antimetabolite 5-fluorouracil, was developed more than forty years ago, and as a single agent produces responses in only 10 to 15% of patients which in general last less than one year. Efforts to ameliorate these poor results resulted in the 5-fluorouracil/leucovorin combination, which enhances response rates about two-fold, without, however, significantly improving survival rates. The recent emergence of a handful of new 5-fluorouracil analogues and folate antagonists, as well as the topoisomerase I inhibitor irinotecan, and the third-generation platinum compound oxaliplatin, is likely to alter this gloomy scenario. These agents are at least as effective as 5-fluorouracil in patients with advanced colorectal carcinoma, both untreated and previously treated with 5-fluorouracil-based regimens. This has led to the approval of irinotecan as second-line treatment for 5-fluorouracil-refractory disease, while the use of oxaliplatin has been suggested for patients having a defective 5-fluorouracil catabolism. Recently, FDA approved the combination of irinotecan with 5-fluorouracil and leucovorin for first-line treatment of advanced colon cancer. Based on the synergistic preclinical antitumor effects of some of these agents, their meaningful single-agent activity, distinct mechanisms of cytotoxicity and resistance, and only partially overlapping toxicity profiles, effective combination regimens are now being developed, which are likely to lead to a new, more hopeful era for patients suffering from advanced colorectal carcinoma.
Resumo:
In a previous study we demonstrated that the incidence of fibroblast colony-forming units (CFU-F) was very low in bone marrow primary cultures from the majority of untreated advanced non-small lung cancer patients (LCP) compared to normal controls (NC). For this reason, we studied the ability of bone marrow stromal cells to achieve confluence in primary cultures and their proliferative capacity following four continuous subcultures in consecutive untreated LCP and NC. We also evaluated the production of interleukin-1ß (IL-1ß) and prostaglandin E2 (PGE2) by pure fibroblasts. Bone marrow was obtained from 20 LCP and 20 NC. A CFU-F assay was used to investigate the proliferative and confluence capacity. Levels of IL-1ß and PGE2 in conditioned medium (CM) of pure fibroblast cultures were measured with an ELISA kit and RIA kit, respectively. Only fibroblasts from 6/13 (46%) LCP confluent primary cultures had the capacity to proliferate following four subcultures (NC = 100%). Levels of spontaneously released IL-1ß were below 10 pg/ml in the CM of LCP, while NC had a mean value of 1,217 ± 74 pg/ml. In contrast, levels of PGE2 in these CM of LCP were higher (77.5 ± 23.6 pg/ml) compared to NC (18.5 ± 0.9 pg/ml). In conclusion, bone marrow fibroblasts from LCP presented a defective proliferative and confluence capacity, and this deficiency may be associated with the alteration of IL-1ß and PGE2 production.
Resumo:
Anna Henning-Lindblomin väitöskirja Vem är jag, vem är vi, vem är vem i vårt land? : kontextens betydelse för gruppidentifikation och stereotypier bland svensk- och finskspråkiga i Finland och Sverige (Helsingin yliopisto 2012).
Resumo:
Epithelial ovarian cancer (EOC) is usually diagnosed in an advanced stage. The prognosis depends highly on the amount of the residual tumor in surgery. In patients with extensive disease, neoadjuvant chemotherapy (NACT) is used to diminish the tumor load before debulking surgery. New non-invasive methods are needed to preoperatively evaluate the disease dissemination and operability. [18F] FDG PET/CT (Positron emission tomography/computed tomography) is a promising method for cancer diagnostics and staging. The biomarker profiles during treatment can predict patient’s outcome. This prospective study included 41 EOC patients, 21 treated with primary surgery and 20 with NACT and interval surgery. The performances of preoperative contrast enhanced PET/CT (PET/ceCT) and diagnostic CT (ceCT) were compared. Perioperative visual estimation of tumor spread was studied in primary and interval surgery. The profile of the serum marker HE4 (Human epididymis 4) during primary chemotherapy was evaluated. In primary surgery, surgical findings were found to form an adequate reference standard for imaging studies. After NACT, the sensitivity for visual estimation of cancer dissemination was significantly worse. Preoperative PET/ceCT was more effective than ceCT alone in detecting extra-abdominal disease spread. The high number of supradiaphragmatic lymph node metastases detected by PET/ceCT at the time of diagnosis brings new insight in EOC spread patterns. The sensitivity of both PET/CT and ceCT remained modest in intra-abdominal areas important to operability. The HE4 profile was in concordance with the CA125 profile during primary chemotherapy. Its role in the evaluation of EOC chemotherapy response will be clarified in further studies.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Life cycle assessment (LCA) is one of the most established quantitative tools for environmental impact assessment of products. To be able to provide support to environmentally-aware decision makers on environmental impacts of biomass value-chains, the scope of LCA methodology needs to be augmented to cover landuse related environmental impacts. This dissertation focuses on analysing and discussing potential impact assessment methods, conceptual models and environmental indicators that have been proposed to be implemented into the LCA framework for impacts of land use. The applicability of proposed indicators and impact assessment frameworks is tested from practitioners' perspective, especially focusing on forest biomass value chains. The impacts of land use on biodiversity, resource depletion, climate change and other ecosystem services is analysed and discussed and the interplay in between value choices in LCA modelling and the decision-making situations to be supported is critically discussed. It was found out that land use impact indicators are necessary in LCA in highlighting differences in impacts from distinct land use classes. However, many open questions remain on certainty of highlighting actual impacts of land use, especially regarding impacts of managed forest land use on biodiversity and ecosystem services such as water regulation and purification. The climate impact of energy use of boreal stemwood was found to be higher in the short term and lower in the long-term in comparison with fossil fuels that emit identical amount of CO2 in combustion, due to changes implied to forest C stocks. The climate impacts of energy use of boreal stemwood were found to be higher than the previous estimates suggest on forest residues and stumps. The product lifetime was found to have much higher influence on the climate impacts of woodbased value chains than the origin of stemwood either from thinnings or final fellings. Climate neutrality seems to be likely only in the case when almost all the carbon of harvested wood is stored in long-lived wooden products. In the current form, the land use impacts cannot be modelled with a high degree of certainty nor communicated with adequate level of clarity to decision makers. The academia needs to keep on improving the modelling framework, and more importantly, clearly communicate to decision-makers the limited certainty on whether land-use intensive activities can help in meeting the strict mitigation targets we are globally facing.