895 resultados para Acute phase protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of molecular approaches have been used to investigate the structural and enzymatic properties of rat brain type ll Ca^(2+) and calmodulin-dependent protein kinase (type ll CaM kinase). This thesis describes the isolation and biochemical characterization of a brain-region specific isozyme of the kinase and also the regulation the kinase activity by autophosphorylation.

The cerebellar isozyme of the type ll CaM kinase was purified and its biochemical properties were compared to the forebrain isozyme. The cerebellar isozyme is a large (500-kDa) multimeric enzyme composed of multiple copies of 50-kDa α subunits and 60/58-kDa β/β’ subunits. The holoenzyme contains approximately 2 α subunits and 8 β subunits. This contrasts to the forebrain isozyme, which is also composed of and β/β'subunits, but they are assembled into a holoenzyme of approximately 9 α subunits and 3 β/β ' subunits. The biochemical and enzymatic properties of the two isozymes are similar. The two isozymes differ in their association with subcellular structures. Approximately 85% of the cerebellar isozyme, but only 50% of the forebrain isozyme, remains associated with the particulate fraction after homogenization under standard conditions. Postsynaptic densities purified from forebrain contain the forebrain isozyme, and the kinase subunits make up about 16% of their total protein. Postsynaptic densities purified from cerebellum contain the cerebellar isozyme, but the kinase subunits make up only 1-2% of their total protein.

The enzymatic activity of both isozymes of the type II CaM kinase is regulated by autophosphorylation in a complex manner. The kinase is initially completely dependent on Ca^(2+)/calmodulin for phosphorylation of exogenous substrates as well as for autophosphorylation. Kinase activity becomes partially Ca^(2+) independent after autophosphorylation in the presence of Ca^(2+)/calmodulin. Phosphorylation of only a few subunits in the dodecameric holoenzyme is sufficient to cause this change, suggesting an allosteric interaction between subunits. At the same time, autophosphorylation itself becomes independent of Ca^(2+) These observations suggest that the kinase may be able to exist in at least two stable states, which differ in their requirements for Ca^(2+)/calmodulin.

The autophosphorylation sites that are involved in the regulation of kinase activity have been identified within the primary structure of the α and β subunits. We used the method of reverse phase-HPLC tryptic phosphopeptide mapping to isolate individual phosphorylation sites. The phosphopeptides were then sequenced by gas phase microsequencing. Phosphorylation of a single homologous threonine residue in the α and β subunits is correlated with the production of the Ca^(2+) -independent activity state of the kinase. In addition we have identified several sites that are phosphorylated only during autophosphorylation in the absence of Ca^(2+)/ calmodulin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative director fluctuations in lipid bilayers have been postulated for many years. ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements have been used identify these motions and to determine the origin of increased slow bilayer motion upon addition of unlike lipids or proteins to a pure lipid bilayer.

The contribution of cooperative director fluctuations to NMR relaxation in lipid bilayers has been expressed mathematically using the approach of Doane et al.^1 and Pace and Chan.^2 The T_2^(-1)’s of pure dimyristoyllecithin (DML) bilayers deuterated at the 2, 9 and 10, and all positions on both lipid hydrocarbon chains have been measured. Several characteristics of these measurements indicate the presence of cooperative director fluctuations. First of all, T_2^(-1) exhibits a linear dependence on S2/CD. Secondly, T_2^(-1) varies across the ^2H-NMR powder pattern as sin^2 (2, β), where , β is the angle between the average bilayer director and the external magnetic field. Furthermore, these fluctuations are restricted near the lecithin head group suggesting that the head group does not participate in these motions but, rather, anchors the hydrocarbon chains in the bilayer.

T_2^(-1)has been measured for selectively deuterated liquid crystalline DML hilayers to which a host of other lipids and proteins have been added. The T_2^(-1) of the DML bilayer is found to increase drastically when chlorophyll a (chl a) and Gramicidin A' (GA') are added to the bilayer. Both these molecules interfere with the lecithin head group spacing in the bilayer. Molecules such as myristic acid, distearoyllecithin (DSL), phytol, and cholesterol, whose hydrocarbon regions are quite different from DML but which have small,neutral polar head groups, leave cooperative fluctuations in the DML bilayer unchanged.

The effect of chl a on cooperative fluctuations in the DML bilayer has been examined in detail using ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements. Cooperative fluctuations have been modelled using the continuum theory of the nematic state of liquid crystals. Chl a is found to decrease both the correlation length and the elastic constants in the DML bilayer.

A mismatch between the hydrophobic length of a lipid bilayer and that of an added protein has also been found to change the cooperative properties of the lecithin bilayer. Hydrophobic mismatch has been studied in a series GA' / lecithin bilayers. The dependence of 2H-NMR order parameters and relaxation rates on GA' concentration has been measured in selectively deuterated DML, dipalmitoyllecithin (DPL), and DSL systems. Order parameters, cooperative lengths, and elastic constants of the DML bilayer are most disrupted by GA', while the DSL bilayer is the least perturbed by GA'. Thus, it is concluded that the hydrophobic length of GA' best matches that of the DSL bilayer. Preliminary Raman spectroscopy and Differential Scanning Calorimetry experiments of GA' /lecithin systems support this conclusion. Accommodation of hydrophobic mismatch is used to rationalize the absence of H_(II) phase formation in GA' /DML systems and the observation of H_(II) phase in GA' /DPL and GA' /DSL systems.

1. J. W. Doane and D. L. Johnson, Chem. Phy3. Lett., 6, 291-295 (1970). 2. R. J. Pace and S. I. Chan, J. Chem. Phy3., 16, 4217-4227 (1982).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. The 3.7 Å Crystal Structure of Horse Heart Ferricytochrome C.

The crystal structure of horse heart ferricytochrome c has been determined to a resolution of 3.7 Å using the multiple isomorphous replacement technique. Two isomorphous derivatives were used in the analysis, leading to a map with a mean figure of merit of 0.458. The quality of the resulting map was extremely high, even though the derivative data did not appear to be of high quality.

Although it was impossible to fit the known amino acid sequence to the calculated structure in an unambiguous way, many important features of the molecule could still be determined from the 3.7 Å electron density map. Among these was the fact that cytochrome c contains little or no α-helix. The polypeptide chain appears to be wound about the heme group in such a way as to form a loosely packed hydrophobic core in the molecule.

The heme group is located in a cleft on the molecule with one edge exposed to the solvent. The fifth coordinating ligand is His 18 and the sixth coordinating ligand is probably neither His 26 nor His 33.

The high resolution analysis of cytochrome c is now in progress and should be completed within the next year.

II. The Application of the Karle-Hauptman Tangent Formula to Protein Phasing.

The Karle-Hauptman tangent formula has been shown to be applicable to the refinement of previously determined protein phases. Tests were made with both the cytochrome c data from Part I and a theoretical structure based on the myoglobin molecule. The refinement process was found to be highly dependent upon the manner in which the tangent formula was applied. Iterative procedures did not work well, at least at low resolution.

The tangent formula worked very well in selecting the true phase from the two possible phase choices resulting from a single isomorphous replacement phase analysis. The only restriction on this application is that the heavy atoms form a non-centric cluster in the unit cell.

Pages 156 through 284 in this Thesis consist of previously published papers relating to the above two sections. References to these papers can be found on page 155.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochemical composition of the muscle of juveniles belonging to 18 different species of freshwater fishes showed that the protein percentage in juveniles was higher than the adults. The fat, on the other hand, was much lower. This suggests that the body fat increases with the onset of maturity. No clear inverse relationship was found between fat and protein in juveniles. Moisture percentage was very high in juveniles. This was probably because of low fat content. In most species the sum of fat and water contents (F + W) was found to be constant. The percentages of ash, calcium and phosphorus were higher in juveniles than those of adults. Dry matter percentage varied inversely with the moisture and in most species carbohydrate was generally low. In juveniles although the calorific value of protein-fraction was high the total calorific value was lower than the adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The toxic effects of dimecron on growth, body composition and oxygen consumption of fingerlings of Labeo rohita were studied. Dimecron concentrations of 4 and 8 mg/l were used. Both acute (3-h) and chronic (15- 42 d) exposure schedules were followed. Compared with the control fish, both 4 and 8 mg/l dimecron treatment significantly suppressed weight gained in fish by 9.71% and 30% respectively during a 42 day exposure period. However, the length of fish was suppressed by 11.46% significantly only in fish group exposed to 8 mg/l dimecron. Similarly, the protein content was also significantly reduced in the above group of fish. The oxygen consumption of fish was elevated considerably, but not significantly in both group of treated fish (8.5% and 26.07%) during acute exposure. However, after 15 days of exposure the rate decreased by 18.98% significantly only in fish exposed to 8 mg/l dimecron. The threshold level of DO at low oxygen environment found to be slightly higher in fish at 8 mg/l dimecron. The survival time at the above oxygen condition was reduced during acute exposure (3-h) and that was extended during chronic (15-d) exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel trypsin inhibitor termed BATI was purified to homogeneity from the skin extracts of toad Bufo andrewsi by successive ion-exchange, gel-filtration and reverse-phase chromatography. BATI is basic single chain glycoprotein, with apparent molecular weight of 22 kDa in SDS-PAGE. BATI is a thermal stable competitive inhibitor and effectively inhibits trypsin's catalytic activity on peptide substrate with the inhibitor constant (K-i) value of 14 nM and shows no inhibitory effect on chymotrypsin, thrombin and elastase. The N-terminal sequence of BATI is EKDSITD, which shows no similarity with other known trypsin inhibitors. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning and memory are exquisitely sensitive to behavioral stress, but the underlying mechanisms are still poorly understood. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as the hippocampus we have examined the means by which stress affects synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats, Inescapable behavioral stress (placement on an elevated platform for 30 min) switched the direction of plasticity, favoring low frequency stimulation-induced decreases in synaptic transmission (long-term depression, LTD), and opposing the induction of long-term potentiation by high frequency stimulation, We have discovered that glucocorticoid receptor activation mediates these effects of stress on LTD and longterm potentiation in a protein synthesis-dependent manner because they were prevented by the glucocorticoid receptor antagonist RU 38486 and the protein synthesis inhibitor emetine. Consistent with this, the ability of exogenously applied corticosterone in non-stressed rats to mimic the effects of stress on synaptic plasticity was also blocked by these agents, The enablement of low frequency stimulation-induced LTD by both stress and exogenous corticosterone was also blocked by the transcription inhibitor actinomycin D, Thus, naturally occurring synaptic plasticity is liable to be reversed in stressful situations via glucocorticoid receptor activation and mechanisms dependent on the synthesis of new protein and RNA, This indicates that the modulation of hippocampus-mediated learning by acute inescapable stress requires glucocorticoid receptor-dependent initiation of transcription and translation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hippocampus, being sensitive to stress and glucocorticoids, plays significant roles in certain types of learning and memory. Therefore, the hippocampus is probably involved in the increasing drug use, drug seeking, and relapse caused by stress. We have studied the effect of stress with morphine on synaptic plasticity in the CA1 region of the hippocampus in vivo and on a delayed-escape paradigm of the Morris water maze. Our results reveal that acute stress enables long-term depression (LTD) induction by low-frequency stimulation (LFS) but acute morphine causes synaptic potentiation. Remarkably, exposure to an acute stressor reverses the effect of morphine from synaptic potentiation ( similar to 20%) to synaptic depression ( similar to 40%), precluding further LTD induction by LFS. The synaptic depression caused by stress with morphine is blocked either by the glucocorticoid receptor antagonist RU38486 or by the NMDA-receptor antagonist D-APV. Chronic morphine attenuates the ability of acute morphine to cause synaptic potentiation, and stress to enable LTD induction, but not the ability of stress in tandem with morphine to cause synaptic depression. Furthermore, corticosterone with morphine during the initial phase of drug use promotes later delayed-escape behavior, as indicated by the morphine-reinforced longer latencies to escape, leading to persistent morphine-seeking after withdrawal. These results suggest that hippocampal synaptic plasticity may play a significant role in the effects of stress or glucocorticoids on opiate addiction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel multi-cell device made of organic glass was designed to study morphological and physiological characteristics of Microcystis population trapped in simulated sediment conditions. Changes of colonial morphology and antioxidant activities of the population were observed and measured over the range of 31-day incubation. During the incubation, the antioxidant enzyme activities fluctuated significantly in sediment environments. The activities of catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (NIDA) reached the highest on the 11(th) day, 6(th) day and 6(th) day. respectively, and then dropped down remarkably in the following days. The ratios of Fv/Fm and the maximal electron transfer rate (ETRm) declined during the initial days (1 similar to 11(th) day), but rebounded on the 16(th) day, which were consistent with the variations of total protein. In the end of incubation. gas vacuoles were hard]), observed and the gelatinous sheath was partly disappeared in the population of Microcystis. Nevertheless, the remaining populations. upon transferred to culture medium, were able to grow though experiencing a longer lag phase of nine days. The results indicated that the sediment environments were able to cause negative effects on M. aeruginosa cells. The cells, however, responded to against the possible damage afterwards. It is thus proposed the acute responses in the population during the early stage of sedimentation could be of importance in aiding the long-term survivor of Microcystis and recruitment in lake sediments. The present study also demonstrated the utility of the device in simulating the sediment environments for further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid and sensitive method was developed and validated for the determination of MCYST (microcystin)-RR, -LR, and [Dha(7)] MCYST-LR in rat plasma by liquid chromatography-tandem mass spectrometry. The analytes were extracted from rat plasma by protein precipitation, followed by solid-phase extraction. Liquid chromatography with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MCYST-RR, -LR, and [Dha(7)] MCYST-LR in rat plasma. The recoveries for each analyte in rat plasma ranged from 70.8 to 88.7%. The calibration curve was linear within the range from 0.005 to 1.25 mu g mL(-1). The limit of detection were 1.4, 1.0, 0.6 ng mL(-1) for MCYST-RR, -LR, and [Dha(7)] MCYST-LR. The overall precision was determined on three different days. The values for within- and between-day precision in rat plasma were within 15%. This method was applied to the identification and quantification of microcystins in rat plasma with acute exposure of microcystins via intravenous injection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute biochemical responses of Potamogeton crispus L. to high external ammonium were investigated in an aquarium experiment. Shoots of P. crispus were incubated in aquaria for 24 h or 48 h at five treatments of ammonium-0, 1, 5, 10 and 20 mg/L NH4-N. Soluble sugar content of the shoots declined markedly with increasing ammonium levels, whereas soluble amino acid content increased dramatically. Responses of two antioxidant enzymes as well as soluble protein content fit a lognormal distribution with increasing ammonium levels. High ammonium levels (NH4-N greater than or equal to 5 mg/L) caused significant acute biochemical changes in P. crispus, which potentially could lead to significant biochemical damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the ability of DNA-PK-deficient (M059J) and -proficient (M059K) cells to undergo the rate of cellular proliferation, cell cycle distribution and apoptosis after 10 Gy X-ray irradiation, and the role of DNA-PK in radiosensitivity. The results showed that M059J cells exhibited hyper-radiosensitivity compared with M059K cells. A strong G2 phase arrest was observed in M059J cells post irradiation. Significant accumulation in the G2 phase in M059J cells was accompanied by apoptosis at 12 h. Altogether, the data suggested that DNA-PK may have two roles in mammalian cells after DNA damage, a role in DNA DSB repair and a second role in DNA-damaged cells to traverse a G2 checkpoint, by which DNA-PK may affect cellular sensitivity to ionizing radiation. 地址: [Li Ning; Zhang Hong; Wang Yanling; Hao Jifang] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China; [Li Ning; Zhang Hong; Wang Yanling; Hao Jifang] Key Lab Heavy Ion Radiat Med Gansu Prov, Lanzhou 730000, Peoples R China; [Li Ning; Wang Yanling] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China; [Wang Xiaohu] Gansu Tumor Hosp, Dept Radiotherapy, Lanzhou 730050, Peoples R China

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed for the determination of interactions of metal ions and protein by using microdialysis sampling technique combined with pre-column derivation and reversed-phase ion-pair liquid chromatographic (HPLC analysis. Cu(II), Zn(II) and human serum albumin (HSA) were chosen as model metal ions and protein, respectively. The mixed solutions of metal ions and HSA with different molar ratios buffered with 0.1 M Tris-HCl containing 0.1 M NaCl at pH 7.43 were sampled with a mirodialysis probe by keeping perfusion rate at 1 mul/min and the temperature at 37 degreesC. The free concentrations of metal ions in microdialysates were assayed by precolumn derivatization with meso-tetra(4-sulfophenyl)-porphyrin (TPPS4) followed ion-pair HPLC analysis. The recovery (R) of microdialysis sampling was measured in vitro under similar conditions as 65.74% for Cu(II), 70.45% for Zn(II) with R.S.D. below 3.2%. The primary binding constants and number of binding site estimated by the Scatchard plot analysis are 5.04 x 10(6) M-1 and 0.85 for Cu(II), and 9.87 x 10(6) M-1 and 1.10 for Zn(II), respectively. The competition of Cu(II) and Zn(II) at the second binding site on HSA was investigated, and it was observed that there is a second site on HSA to bind Cu(II) and Zn(II), the affinity of Cu(II) is stronger than that of Zn(II) to this second site of HSA. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive electrochemiluminescent detection scheme by solid-phase extraction at Ru(bpy)(3)(2+)-modified ceramic carbon electrodes (CCEs) was developed. The as-prepared Ru(bpy)(3)(2+)-modified CCEs show much better long-term stability than other Nafion-based Ru(bpy)(3)(2+)-modified electrodes and enjoy the inherent advantages of CCEs. The log-log calibration plot for dioxopromethazine is linear from 1.0 x 10(-9) to 1.0 x 10(-4) mol L-1 using the new detection scheme. The detection limit is 6.6 x 10(-10) mol L-1 at a signal-to-noise ratio of 3. The new scheme improves the sensitivity by similar to 3 orders of magnitude, which is the most sensitive Ru(bpy)(3)(2+) ECL method. The scheme allows the detection of dioxopromethazine in a urine sample within 3 min. Since Ru(bpy)(3)(2+) ECL is a powerful technique for determination of numerous amine-containing substances, the new detection scheme holds great promise in measurement of free concentrations, investigation of protein-drug interactions and DNA-drug interactions, pharmaceutical analysis, and so on.