928 resultados para Activité tyrosine kinase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear erythroid related factor-2 (NRF2) is known to promote cancer therapeutic detoxification and crosstalk with growth promoting pathways. HER2 receptor tyrosine kinase is frequently overexpressed in cancers leading to uncontrolled receptor activation and signaling. A combination of HER2 targeting monoclonal antibodies shows greater anticancer efficacy than the single targeting antibodies, however, its mechanism of action is largely unclear. Here we report novel actions of anti-HER2 drugs, Trastuzumab and Pertuzumab, involving NRF2. HER2 targeting by antibodies inhibited growth in association with persistent generation of reactive oxygen species (ROS), glutathione (GSH) depletion, reduction in NRF2 levels and inhibition of NRF2 function in ovarian cancer cell lines. The combination of antibodies produced more potent effects than single alone; downregulated NRF2 substrates by repressing the Antioxidant Response (AR) pathway with concomitant transcriptional inhibition of NRF2. We showed the antibody combination produced increased methylation at the NRF2 promoter consistent with repression of NRF2 antioxidant function, as HDAC and methylation inhibitors reversed such produced transcriptional effects. These findings demonstrate a novel mechanism and role for NRF2 in mediating the response of cancer cells to the combination of Trastuzumab and Pertuzumab and reinforce the importance of NRF2 in drug resistance and as a key anticancer target.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: K-ras mutation is found in up to 40% of LARC. Sor is a multitarget tyrosine kinase inhibitor including raf and VEGFR and has demonstrated radiosensitizing effects. Sor might improve outcome of standard preoperative radio-chemotherapy in patients with k-ras mutated LARC. Methods: Pts with k-ras mutated T3-4 and/or N+, M0 disease by MRI were included. Recommended doses from phase I part consisted of RT 1.8 Gy/day x25 with Cape 825mg/m2bid x 33 in combination with Sor 400mg/d. The primary endpoint for the phase II part was pathological complete response (pCR) prospectively defined as grade 3 (near complete regression) or 4 (complete regression) in the histological grading system according to Dworak (DC). A pCR rate of 8% or lower was considered uninteresting and of 22% or higher was promising. Secondary endpoints included sphincter preservation, R0 resection, downstaging and safety. Results: 54 pts were treated in 18 centers in Switzerland und Hungary, 40 pts were included into the single arm phase II part. Median dose intensity per day was 100.0% for RT, 98.6% for Cape and 100.0% for Sor respectively. pCR rate was 60.0% (95%CI: 43.3%, 75.1%) by central independent pathological review (15.0% DC grade 4; 45.0% DC grade 3). Sphincter preservation was achieved in 89.5%, R0 resection in 94.7% and downstaging in 81.6% of the pts. The most common grade 3 toxicities included diarrhea (15.0%), skin toxicity outside of the RT field (12.5%), pain (7.5%), skin toxicity in RT field, proctitis, fatigue and cardiac ischemia (each 5.0%). Laboratory AEs grade 3/4 were neutropenia (1 pt grade 4; 1 grade 3), creatinine elevation (1 pt grade 3). Conclusions: The combination of Sor to standard RCT with Cape in k-ras mutated LARC tumors is highly active with acceptable toxicity and deserves further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although tyrosine kinase inhibitors (TKIs) such as imatinib have transformed chronic myelogenous leukemia (CML) into a chronic condition, these therapies are not curative in the majority of cases. Most patients must continue TKI therapy indefinitely, a requirement that is both expensive and that compromises a patient's quality of life. While TKIs are known to reduce leukemic cells' proliferative capacity and to induce apoptosis, their effects on leukemic stem cells, the immune system, and the microenvironment are not fully understood. A more complete understanding of their global therapeutic effects would help us to identify any limitations of TKI monotherapy and to address these issues through novel combination therapies. Mathematical models are a complementary tool to experimental and clinical data that can provide valuable insights into the underlying mechanisms of TKI therapy. Previous modeling efforts have focused on CML patients who show biphasic and triphasic exponential declines in BCR-ABL ratio during therapy. However, our patient data indicates that many patients treated with TKIs show fluctuations in BCR-ABL ratio yet are able to achieve durable remissions. To investigate these fluctuations, we construct a mathematical model that integrates CML with a patient's autologous immune response to the disease. In our model, we define an immune window, which is an intermediate range of leukemic concentrations that lead to an effective immune response against CML. While small leukemic concentrations provide insufficient stimulus, large leukemic concentrations actively suppress a patient's immune system, thus limiting it's ability to respond. Our patient data and modeling results suggest that at diagnosis, a patient's high leukemic concentration is able to suppress their immune system. TKI therapy drives the leukemic population into the immune window, allowing the patient's immune cells to expand and eventually mount an efficient response against the residual CML. This response drives the leukemic population below the immune window, causing the immune population to contract and allowing the leukemia to partially recover. The leukemia eventually reenters the immune window, thus stimulating a sequence of weaker immune responses as the two populations approach equilibrium. We hypothesize that a patient's autologous immune response to CML may explain the fluctuations in BCR-ABL ratio that are regularly seen during TKI therapy. These fluctuations may serve as a signature of a patient's individual immune response to CML. By applying our modeling framework to patient data, we are able to construct an immune profile that can then be used to propose patient-specific combination therapies aimed at further reducing a patient's leukemic burden. Our characterization of a patient's anti-leukemia immune response may be especially valuable in the study of drug resistance, treatment cessation, and combination therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Non-small cell lung cancer (NSCLC) imposes a substantial burden on patients, health care systems and society due to increasing incidence and poor survival rates. In recent years, advances in the treatment of metastatic NSCLC have resulted from the introduction of targeted therapies. However, the application of these new agents increases treatment costs considerably. The objective of this article is to review the economic evidence of targeted therapies in metastatic NSCLC. Methods: A systematic literature review was conducted to identify cost-effectiveness (CE) as well as cost-utility studies. Medline, Embase, SciSearch, Cochrane, and 9 other databases were searched from 2000 through April 2013 (including update) for full-text publications. The quality of the studies was assessed via the validated Quality of Health Economic Studies (QHES) instrument. Results: Nineteen studies (including update) involving the MoAb bevacizumab and the Tyrosine-kinase inhibitors erlotinib and gefitinib met all inclusion criteria. The majority of studies analyzed the CE of first-line maintenance and second-line treatment with erlotinib. Five studies dealt with bevacizumab in first-line regimes. Gefitinib and pharmacogenomic profiling were each covered by only two studies. Furthermore, the available evidence was of only fair quality. Conclusion: First-line maintenance treatment with erlotinib compared to Best Supportive Care (BSC) can be considered cost-effective. In comparison to docetaxel, erlotinib is likely to be cost-effective in subsequent treatment regimens as well. The insights for bevacizumab are miscellaneous. There are findings that gefitinib is cost-effective in first- and second-line treatment, however, based on only two studies. The role of pharmacogenomic testing needs to be evaluated. Therefore, future research should improve the available evidence and consider pharmacogenomic profiling as specified by the European Medicines Agency. Upcoming agents like crizotinib and afatinib need to be analyzed as well. © Lange et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les Erythropoietin-producing hepatocyte (EPH) sont la plus grande famille de récepteurs tyrosine kinase. Leurs ligands, les éphrines (EFNs), sont aussi des molécules exprimées à la surface cellulaire. Les EPH/EFNs sont impliqués dans de nombreux processus biologiques. L'hypertension artérielle (PA) est une maladie chronique qui, aujourd'hui, est devenue un problème médical critique dans le monde entier et un enjeu de santé publique. La découverte de nouvelles thérapeutiques de l'hypertension sont d'une grande importance pour la santé publique. Jusqu’à tout récemment, il existe seulement quelques études concernant le rôle de l’axe EPH/EFNs sur la fonction des cellules musculaires lisses vasculaires (CMLV). Dans nos études précédentes, nous avons montré qu'EPHB6 et EFNB1, de concert avec les hormones sexuelles, régulent la PA. Dans la présente étude, nous avons constaté que les différents membres de la famille EPH/EFN peuvent réguler soit positivement, soit négativement, la contractilité des CMLV et la PA: tandis que EPHB4 et EFNB2 appartiennent à la première catégorie, EFNB1, EFNB3 et EPHB6 appartiennent à la deuxième. In vivo, des souris males, mais non pas des femelles, porteuses d’une mutation EPHB4 (KO) spécifique du muscle lisse présentent une PA diminuée, comparée aux souris témoins (WT). Les CMLV de souris EPHB4 KO, en présence de testostérone, ont montré une contractilité réduite lors de la stimulation par la phényléphrine (PE). Au niveau moléculaire, la phosphorylation de la protéine kinase II dépendante de Ca2+/calmoduline et de la kinase de la chaine légère de la myosine (CLM) est augmentée, tandis que la phosphorylation de la kinase de la CLM est réduite dans les CMLV KO lors de la stimulation par PE, par rapport au WT CMLV. Cela fournit une base moléculaire à la réduction de la PA et de la contractilité des CMLV chez les souris EPHB4 KO. EFNB2 est le ligand majeur de l’EPHB4. Comme attendu, les souris EFNB2 KO spécifique du muscle lisse avaient un phénotype de PA semblable, quoique non identique, aux souris EPHB4 KO. Les souris mâles EFNB2 KO, mais pas femelles, sous régime régulier ou riche en sel, présentent une PA réduite, par rapport à leurs homologues WT. Au niveau cellulaire, les CMLV des souris KO ont montré une contractilité réduite lors de la stimulation par PE par rapport aux témoins WT. Une région de l’acide aminé (aa) 313 à l’aa 331 dans la partie intracellulaire d’EFNB2 est essentielle pour la signalisation inverse qui régule la contractilité des CMLV, selon des études de mutation-délétion. Dans une étude de génétique humaine, nous avons identifié, dans le gène EFNB2, six SNP qui étaient associées significativement au risque d'hypertension artérielle, de façon dépendante du sexe, ce qui corrobore nos résultats chez les souris. En revanche, la délétion du gène EFNB3 (KO) chez les souris femelles aboutit à une PA élevée et à une augmentation des résistances des petites artères in vivo, améliore la contractilité des petites artères ex-vivo et augmente la contractilité des CMLV in vitro. Les souris mâles KO ont une PA normale, mais la castration conduit à une augmentation significative de la PA dans les souris KO, mais pas dans les souris WT. Les CMLV des souris KO femelles ont montré une phosphorylation accrue de la CLM et une phosphorylation réduite de la kinase de la CLM, ce qui fournit à nouveau une base moléculaire aux phénotypes de PA et de contractilité des CMLV observés. Ce changement de signalisation est attribuable à une protéine adaptatrice Grip1. En effet, dans une étude d'association pan génomique par le Consortium International pour la Pression Sanguine, un SNP dans le gène GRIP1 a approché le seuil de significativité de la valeur p pour son association avec la pression diastolique. Nos recherches, pour la première fois, ont révélé que EPH/EFNs sont de nouveaux composants dans le système de régulation de la PA. Les membres de la famille EPH/EFN peuvent agir comme des forces Yin et Yang pour régler finement le tonus des vaisseaux pour assurer l'homéostasie de la PA et de sa régulation. Ces effets de EPH/EFNs dépendent du sexe et des niveaux d’hormones sexuelles. À partir de ces nouvelles connaissances, nous pourrions développer une nouvelle thérapie personnalisée pour l’hypertension artérielle, utilisant des antagonistes d'hormones sexuelles ou des thérapies de remplacement d'hormones sexuelles, selon les niveaux d'hormones sexuelles des patients et les mutations dans les gènes de l'EPH/EFN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and platelet-derived growth factor-BB (PDGF-BB) are associated with excessive cell migration, proliferation and many growth-related diseases. However, whether these agents utilise similar mechanisms to trigger vascular pathologies remains to be explored. The effects of Ang II and PDGF-BB on coronary artery smooth muscle cell (CASMC) migration and proliferation were investigated via Dunn chemotaxis assay and the measurement of [3H]thymidine incorporation rates, respectively. Both atherogens produced similar degrees of cell migration which were dramatically inhibited by mevastatin (10 nM). However, the inhibitory effects of losartan (10 nM) and MnTBAP (a free radical scavenger; 50 μM) were found to be unique to Ang II-mediated chemotaxis. In contrast, MnTBAP, apocynin (an antioxidant and phagocytic NADPH oxidase inhibitor; 500 μM), mevastatin and pravastatin (100 nM) equally suppressed both Ang II and PDGF-BB-induced cellular growth. Although atherogens produced similar changes in NADPH oxidase, NOS and superoxide dismutase activities, they differentially regulated antioxidant glutathione peroxidase activity which was diminished by Ang II and unaffected by PDGF-BB. Studies with signal transduction pathway inhibitors revealed the involvement of multiple pathways i.e. protein kinase C, tyrosine kinase and MAPK in Ang II- and/or PDGF-BB-induced aforementioned enzyme activity changes. In conclusion, Ang II and PDGF-BB may induce coronary atherosclerotic disease formation by stimulating CASMC migration and proliferation through agent-specific regulation of oxidative status and utilisation of different signal transduction pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The prognosis is still poor for patients with a metastatic bone tumor and new treatment approaches (anti-VEGF and tyrosine kinase inhibitors vs) are therefore needed. Objectives: The aim of our study was to evaluate how the primary and metastatic lesions of our patients with a bone tumor were affected by these treatments and to determine the importance of the 18F-FDG PET method. Patients and Methods: Twenty metastatic bone tumor cases were included. Sorafenib and anti-VEGF were added to the standard treatment in cases with widespread metastatic disease at diagnosis or after neoadjuvant chemotherapy showing less than 90% tumor necrosis in the surgical sample. Positron emission tomography (PET) imaging was performed at diagnosis, the preoperative period following neoadjuvant chemotherapy, during postoperative follow-up, and when treatment was discontinued. Results: The primary treatment region median SUVmax level decreased from 7.35 to 2.5 in the living patients (n = 16) while there was no significant decrease in the patients who succumbed to the disease (P < 0.001). Comparison of the pre- and post-treatment metastasis region median SUVmax levels in patients with metastatic involvement showed a decrease from 2.1 to 0 in the surviving patients but only from 4.8 to 3.2 in the deceased patients (P < 0.01). Survival results indicated that 28.6% of the patients receiving classical treatment only died while all the patients receiving additional sorafenib and anti-VEGF survived. Conclusions: 18F-PET may be a useful technique before and during the follow-up of neoadjuvant treatment in pediatric metastatic bone tumor patients. The addition of sorafenib and anti-VEGF to classical treatment has a favorable contribution to the response and therefore the survival duration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fibroblast growth factor (FGF) family consists of 22 evolutionarily and structurally related proteins (FGF1 to FGF23; with FGF15 being the rodent ortholog of human FGF19). Based on their mechanism of action, FGFs can be categorized into intracrine, autocrine/paracrine and endocrine subgroups. Both autocrine/paracrine and endocrine FGFs are secreted from their cells of origin and exert their effects on target cells by binding to and activating specific single-pass transmembrane tyrosine kinase receptors (FGFRs). Moreover, FGF binding to FGFRs requires specific cofactors, namely heparin/heparan sulfate proteoglycans or Klothos for autocrine/paracrine and endocrine FGF signaling, respectively. FGFs are vital for embryonic development and mediate a broad spectrum of biological functions, ranging from cellular excitability to angiogenesis and tissue regeneration. Over the past decade certain FGFs (e.g. FGF1, FGF10, FGF15/FGF19 and FGF21) have been further recognized as regulators of energy homeostasis, metabolism and adipogenesis, constituting novel therapeutic targets for obesity and obesity-related cardiometabolic disease. Until recently, translational research has been mainly focused on FGF21, due to the pleiotropic, beneficial metabolic actions and the relatively benign safety profile of its engineered variants. However, increasing evidence regarding the role of additional FGFs in the regulation of metabolic homeostasis and recent developments regarding novel, engineered FGF variants have revitalized the research interest into the therapeutic potential of certain additional FGFs (e.g. FGF1 and FGF15/FGF19). This review presents a brief overview of the FGF family, describing the mode of action of the different FGFs subgroups, and focuses on FGF1 and FGF15/FGF19, which appear to also represent promising new targets for the treatment of obesity and type 2 diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A(2) activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A(2) activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca2+ inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proteins of the DYRK (dual-specificity tyrosine-phosphorylation-regulated kinase) family are characterized by the presence of a conserved kinase domain and N-terminal DH box. DYRK2 is involved in regulating key developmental and cellular processes, such as neurogenesis, cell proliferation, cytokinesis, and cellular differentiation. Herein, we report that the ortholog of DYRK2 found in zebrafish shares about 70% identity with that of human, mouse, and chick. RT-PCR showed that DYRK2 is expressed maternally and zygotically. In-situ hybridization results show that DYRK2 is expressed in somite cells that will develop into muscles. Our results provide preliminary evidence for investigating the in-vivo function of DYRK2 in zebrafish muscle development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1- Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti- phospho-Tyr9 antibodies showed that the level of Tyr9 phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr9, distinct from Tyr373/376, is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr9 phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.