990 resultados para Active silica
Resumo:
This paper describes a measurement on a GaAs quantum well waveguide with a high built in field across the quantum wells at a wavelength far from the bandedge. The device structure used for the measurement has been fabricated at STC Technology Ltd and is that of a standard laser ridge structure. In fabrication double heterostructure layers are grown on a [001] n + GaAs substrate, with the active region containing two intrinsic GaAs quantum wells of 10nm thickness separated by 10nm. A 4μm wide ridge is etched to provide transverse optical guiding. The experimental work has involved the use of 1.06μm wavelength light from a Q-switched Nd:YAG laser. Any induced change in refractive index is determined by measuring the change in transmission of the quantum well waveguide Fabry-Perot cavity. The waveguide is placed on a Peltier temperature controller to allow thermal tuning.
Resumo:
We report an InGaAsP/InP phase modulator operating in the 1.5μm wavelength band. Phase modulation of 7.5°/mA and 1.7°/mA of injected current have been measured for TE and TM polarised light respectively at a signal wavelength of 1.52 μm.
Resumo:
An extremely compact active optoelectronic crosspoint switch, having overall dimensions of 400 μm×200 μm, is reported. The device provides unity facet-to-facet gain for both bar and cross state operation for TE or TM input signals.
Er3+-doped glass-polymer composite thin films fabricated using combinatorial pulsed laser deposition
Resumo:
Siloxane Polymer exhibits low loss in the 800-1500 nm range which varies between 0.01 and 0.66 dB cm1. It is for such low loss the material is one of the most promising candidates in the application of engineering passive and active optical devices [1, 2]. However, current polymer fabrication techniques do not provide a methodology which allows high structurally solubility of Er3+ ions in siloxane matrix. To address this problem, Yang et al.[3] demonstrated a channel waveguide amplifier with Nd 3+-complex doped polymer, whilst Wong and co-workers[4] employed Yb3+ and Er3+ co-doped polymer hosts for increasing the gain. In some recent research we demonstrated pulsed laser deposition of Er-doped tellurite glass thin films on siloxane polymer coated silica substrates[5]. Here an alternative methodology for multilayer polymer-glass composite thin films using Er3+ - Yb3+ co-doped phosphate modified tellurite (PT) glass and siloxane polymer is proposed by adopting combinatorial pulsed laser deposition (PLD). © 2011 IEEE.
Resumo:
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.
Resumo:
Gold-decorated silica nanoparticles were synthesized in a two-step process in which silica nanoparticles were produced by chemical vapor synthesis using tetraethylorthosilicate (TEOS) and subsequently decorated using two different gas-phase evaporative techniques. Both evaporative processes resulted in gold decoration of the silica particles. This study compares the mechanisms of particle decoration for a production method in which the gas and particles remain cool to a method in which the entire aerosol is heated. Results of transmission electron microscopy and visible spectroscopy studies indicate that both methods produce particles with similar morphologies and nearly identical absorption spectra, with peak absorption at 500-550 nm. A study of the thermal stability of the particles using heated-TEM indicates that the gold decoration on the particle surface remains stable at temperatures below 900 °C, above which the gold decoration begins to both evaporate and coalesce.