919 resultados para ANTIOXIDANT ENZYME-ACTIVITIES
Resumo:
Propolis (bee glue) is one of the major hive products of bees and is rich in flavonoids, which are known for their antioxidant activities. The aim of this study was to evaluate the hepatoprotective effects of the ethanolic extract of propolis (EEP) against experimental carbon tetrachloride (CCl 4)-induced liver toxicity in rats by means of biochemical indices. The animals were divided into 4 groups: GI= received mineral oil; GII= CCl 4(4mL/kg; Lp., single dose) treated; GIII= CCl4 (4mL/kg; i.p., single dose) treatment followed by ethanolic extract of propolis (100mg/kg) for gavage from the species Tetragonisca angustula, daily for 3 days and GIV= CCl4 (4mL/kg; i.p., single dose) treatment followed by ethanolic extract of propolis (100mg/kg) for gavage from the species Nannotrigonea testaceicornes, daily, for 3 days. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cholesterol and triacylglycerols were estimated after 3 days. CCl 4 caused a maximum increase (p<0,01) above biochemical parameters. As compared to CCl4 group (GII), the EEP (GIII and GIV) showed reduction in cholesterol, triacylglycerol, ALT, AST and alkaline phosphatase activity in the serum. In conclusion, these data indicate that EEP improved the dyslipidaemia, moreover, significantly attenuated increases in serum ALT and AST activities in rats with liver damage induced by carbon tetrachloride.
Resumo:
The present work was carried out at the Faculdade de Ciências Agronômicas - UNESP, Botucatu, SP. The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11.1.7) activity as an indicator of water stress in plants. Sweet pepper plants were grown for 230 days after transplanting of seedlings. The experiment was arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated, as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving the plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
Phenolic compounds are numerous and ubiquitous in the plant kingdom, being particularly present in health-promoting foods. Epidemiological evidences suggest that the consumption of polyphenol-rich foods reduces the incidence of cancer, coronary heart disease and inflammation. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Data obtained from in vivo and in vitro experiments show that CGA mostly presents antioxidant and anti-carcinogenic activities. However, the effects of CGA on the inflammatory reaction and on the related pain and fever processes have been explored less so far. Therefore, this study was designed to evaluate the anti-inflammatory, antinociceptive and antipyretic activities of CGA in rats. In comparison to control, CGA at doses 50 and 100 mg/kg inhibited carrageenin-induced paw edema beginning at the 2nd hour of the experimental procedure. Furthermore, at doses 50 and 100 mg/kg CGA also inhibited the number of flinches in the late phase of formalin-induced pain test. Such activities may be derived from the inhibitory action of CGA in the peripheral synthesis/release of inflammatory mediators involved in these responses. On the other hand, even at the highest tested dose (200 mg/kg), CGA did not inhibit the febrile response induced by lipopolysaccharide (LPS) in rats. Additional experiments are necessary in order to clarify the true target for the anti-inflammatory and analgesic effects of CGA. © 2006 Pharmaceutical Society of Japan.
Resumo:
The aim of this study was to investigate the effects of caffeine (20. mg/L) intake on cadmium (15. mg/L) accumulation in the rat blood, testes, epididymis and prostate as well as cadmium-induced changes to the antioxidant defense system of the epididymis. Caffeine reduced the cadmium concentration in all tissues analyzed. Meanwhile, cadmium reduced catalase activity and increased superoxide dismutase (SOD) activity in the epididymis. Caffeine increased SOD activity, catalase and glutathione tissue expression and sustains the cadmium's effect on catalase and GSP-Px activity. No differences in the expression of metallothionein and lipid peroxidation were observed among the different treatments in the epididymis. In conclusion, low doses of cadmium alter the antioxidant enzymatic profile of the epididymis, but not induced oxidative lipid damage. Caffeine intake reduces overall cadmium accumulation in the organism and enhances the levels of antioxidant protein expression in the epididymis, thus exerting a protective effect against this metal. © 2012 Elsevier Inc.
Resumo:
Annona crassiflora Mart. is a typical fruit of the Brazilian cerrado, considered to be a species of economic interest, mainly for its use in cooking, which is widespread among the inhabitants of that region, and can be found in many typical local dishes, especially sweets, jellies, liqueurs, soft drinks, ice creams and juices. Thus, the objective of this study was to determine the bioactive substance contents and the antioxidant capacity of the lipid fraction of A. crassiflora Mart. seeds in the interest of better identifying the quality of this raw material from the Brazilian cerrado. After the receipt of the fruits, the seeds were removed manually and, then, the lipid fraction was obtained by cold extraction with chloroform:methanol:water (2:1:0.8, v/v/v) and analyzed for the composition of phytosterols, tocopherols, fatty acids, total carotenoids, antioxidant activity and oxidative stability index. The lipid fraction showed significant quantity of bioactive substances, especially phytosterols, tocopherols and unsaturated fatty acids, as well as significant antioxidant capacity and oxidative stability, influenced by the content of phytosterols and the composition of fatty acids present in the analyzed fraction. © 2012 Elsevier B.V.
Resumo:
Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs). Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125-2 mg/mL), taurine (1-16 mg/mL), and guarana (3.125-50 mg/mL) showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD) and catalase (CAT) activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses) of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5-50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or antioxidative stress), could be a cause of in vitro toxicity induced by these drugs. © 2013 Fares Zeidán-Chuliá et al.
Resumo:
Several mushroom species have been pointed out as sources of antioxidant compounds, in addition to their important nutritional value. Agaricus blazei and Lentinus edodes are among the most studied species all over the world, but those studies focused on their fruiting bodies instead of other presentations, such as powdered preparations, used as supplements. In the present work the chemical composition (nutrients and bioactive compounds) and antioxidant activity (free radical scavenging activity, reducing power and lipid peroxidation inhibition) of dried powder formulations of the mentioned mushroom species (APF and LPF, respectively) were evaluated. Powder formulations of both species revealed the presence of essential nutrients, such as proteins, carbohydrates and unsaturated fatty acids. Furthermore, they present a low fat content (<2 g/100 g) and can be used in low-calorie diets, just like the mushrooms fruiting bodies. APF showed higher antioxidant activity and higher content of tocopherols and phenolic compounds (124 and 770 μg/100 g, respectively) than LPF (32 and 690 μg/100 g). Both formulations could be used as antioxidant sources to prevent diseases related to oxidative stress. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Flavonoid-rich Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae) is a native plant of South America. This study evaluates the gastroprotective activity and possible mechanisms for both the chloroform (CHCl3P) and ethyl acetate phases (AcOEtP) obtained from aerial parts of the plant. The activity was investigated using acute models of gastric ulcer. Gastric secretion biochemical parameters were determined after pylorus ligature. The participation of cytoprotective factors such as mucus, nitric oxide (NO), sulfhydryl (SH) groups, prostaglandin E2 (PGE 2), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduction of lipid peroxidation (malondialdehyde level), and polymorphonuclear infiltration (myeloperoxidase activity), was also investigated. CHCl3P (125, 250, and 500 mg/kg) and AcOEtP (62.5, 125, and 250 mg/kg) showed significant gastroprotective activity, reducing the ulcerative index by 75, 83, 88 % and 66, 66, 81 % for ethanol; 67, 67, 56 % and 56, 53, 58 % for a non-steroidal anti-inflammatory drug (NSAID); and 74, 58, 59 % and 64, 65, 61 % for stress-induced gastric ulcer, respectively. CHCl3P (125 mg/kg) and AcOEtP (62.5 mg/kg) significantly reduced the ulcerative area by 78 and 83 %, respectively, for the ischemia-reperfusion model. They also did not alter the biochemical parameters of gastric secretion, the GSH level or the activities of SOD, GPx or GR. They increased the quantity of gastric mucus, not dependent on NO, yet dependent on SH groups, and maintained PGE2 levels. The P. clematidea phases demonstrated gastroprotective activity related to cytoprotective factors. © 2012 The Japanese Society of Pharmacognosy and Springer.
Antioxidant activity of basil and oregano extracts added to soybean oil for accelerated storage test
Resumo:
The objective of this research was to evaluate the antioxidant activity of extract of basil and oregano, and its synergistic effect when added to soybean oil and subjected to accelerated storage test. Extracts of basil, oregano and mixtures of both were applied to soybean oil at a concentration of 2.000mg/kg, then the extracts were heated in an oven at 60C for a period of 10 days. Samples were taken every 2 days and analyzed for concentrations of peroxides and conjugated dienes. Synthetic antioxidant tert-butylhydroquinone (TBHQ) at a concentration of 50mg/kg and soybean oil free antioxidant (control) subject to the same conditions were used as benchmarks. The results showed that the antioxidant effect decreases according to oil heating for all treatments. However, the synthetic antioxidant showed superior protection to the soybean oil during the formation of primary oxidation compounds, followed by the natural extracts, which showed no synergism. © 2012 Wiley Periodicals, Inc.
Resumo:
Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.
Resumo:
Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7d to 0.01mLL-1 and 0.1mLL-1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2'-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota. © 2013 Elsevier Ltd.
Resumo:
Four different assays (the Folin-Ciocalteu, DPPH, enzymatic method, and inhibitory activity on lipid peroxidation) based on radically different physicochemical principles and normally used to determine the antioxidant activity of food have been confronted and utilized to investigate the antioxidant activity of fruits originated from Brazil, with particular attention to more exotic and less-studied species (jurubeba, Solanum paniculatum; pequi, Caryocar brasiliense; pitaya, Hylocereus undatus; siriguela, Spondias purpurea; umbu, Spondias tuberosa) in order to (i) verify the correlations between results obtained by the different assays, with the final purpose to obtain more reliable results avoiding possible measuring-method linked mistakes and (ii) individuate the more active fruit species. As expected, the different methods give different responses, depending on the specific assay reaction. Anyhow all results indicate high antioxidant properties for siriguela and jurubeba and poor values for pitaya, umbu, and pequi. Considering that no marked difference of ascorbic acid content has been detected among the different fruits, experimental data suggest that antioxidant activities of the investigated Brazilian fruits are poorly correlated with this molecule, principally depending on their total polyphenolic content. © 2013 Elena Gregoris et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência Animal - FMVA