953 resultados para ANTIMALARIAL VACCINE
Resumo:
Viral proteins are not naturally selected for high affinity major histocompatibility complex (MHC) binding sequences; indeed, if there is any selection, it is likely to be negative in nature. Thus, one should be able to increase viral peptide binding to MHC in the rational design of synthetic peptide vaccines. The T1 helper peptide from the HIV-1 envelope protein was made more immunogenic for inducing T cell proliferation to the native sequence by replacing a residue that exerts an adverse influence on peptide binding to an MHC class II molecule. Mice immunized with vaccine constructs combining the more potent Th helper (Th) epitope with a cytotoxic T lymphocyte (CTL) determinant developed greatly enhanced CTL responses. Use of class II MHC-congenic mice confirmed that the enhancement of CTL response was due to class II-restricted help. Thus, enhanced T cell help is key for optimal induction of CTL, and, by modification of the native immunogen to increase binding to MHC, it is possible to develop second generation vaccine constructs that enhance both Th cell activation and CTL induction.
Resumo:
We demonstrated that peripheral T cell tolerance toward murine melanoma self-antigens gp100 and TRP-2 can be broken by an autologous oral DNA vaccine containing the murine ubiquitin gene fused to minigenes encoding peptide epitopes gp10025–33 and TRP-2181–188. These epitopes contain dominant anchor residues for MHC class I antigen alleles H-2Db and H-2Kb, respectively. The DNA vaccine was delivered by oral gavage by using an attenuated strain of Salmonella typhimurium as carrier. Tumor-protective immunity was mediated by MHC class I antigen-restricted CD8+ T cells that secreted TH1 cytokine IFN-γ and induced tumor rejection and growth suppression after a lethal challenge with B16G3.26 murine melanoma cells. Importantly, the protective immunity induced by this autologous DNA vaccine against murine melanoma cells was at least equal to that achieved through xenoimmunization with the human gp10025–33 peptide, which differs in its three NH2-terminal amino acid residues from its murine counterpart and was previously reported to be clearly superior to an autologous vaccine in inducing protective immunity. The presence of ubiquitin upstream of the minigene proved to be essential for achieving this tumor-protective immunity, suggesting that effective antigen processing and presentation may make it possible to break peripheral T cell tolerance to a self-antigen. This vaccine design might prove useful for future rational designs of other recombinant DNA vaccines targeting tissue differentiation antigens expressed by tumors.
Resumo:
DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.
Resumo:
The increasing resistance of the malaria parasite Plasmodium falciparum to currently available drugs demands a continuous effort to develop new antimalarial agents. In this quest, the identification of antimalarial effects of drugs already in use for other therapies represents an attractive approach with potentially rapid clinical application. We have found that the extensively used antimycotic drug clotrimazole (CLT) effectively and rapidly inhibited parasite growth in five different strains of P. falciparum, in vitro, irrespective of their chloroquine sensitivity. The concentrations for 50% inhibition (IC50), assessed by parasite incorporation of [3H]hypoxanthine, were between 0.2 and 1.1 μM. CLT concentrations of 2 μM and above caused a sharp decline in parasitemia, complete inhibition of parasite replication, and destruction of parasites and host cells within a single intraerythrocytic asexual cycle (≈48 hr). These concentrations are within the plasma levels known to be attained in humans after oral administration of the drug. The effects were associated with distinct morphological changes. Transient exposure of ring-stage parasites to 2.5 μM CLT for a period of 12 hr caused a delay in development in a fraction of parasites that reverted to normal after drug removal; 24-hr exposure to the same concentration caused total destruction of parasites and parasitized cells. Chloroquine antagonized the effects of CLT whereas mefloquine was synergistic. The present study suggests that CLT holds much promise as an antimalarial agent and that it is suitable for a clinical study in P. falciparum malaria.
Resumo:
The effects of immunization with the second-generation cocaine immunoconjugate GND-keyhole limpet hemocyanin (KLH) or with the anti-cocaine mAb GNC92H2 were assessed in a model of acute cocaine-induced locomotor activity. After i.p. administration of cocaine⋅HCl (15 mg/kg), rats were tested in photocell cages, and stereotypy was rated to determine preimmunization drug response (baseline). Experimental animals were subjected to an immunization protocol with GND-KLH or treated with the mAb GNC92H2. Rats were then challenged with systemic cocaine, and their locomotor responses were again measured. Active immunization with GND-KLH produced a 76% decrease in the ambulatory measure (crossovers) in the experimental group and a 12% increase in the control group compared with baseline values. Also, stereotypic behavior was significantly suppressed in the vaccinated animals. Decreases in both measures were seen in the experimental group on two subsequent challenges. The maximum effect was observed at the time of the second challenge with a dramatic 80% decrease in crossovers. Treatment with GNC92H2 resulted in a 69% decrease in crossovers compared with baseline. This effect persisted across two additional challenges over 11 days with decreases of 46–47%. In contrast, the control group showed increases of up to 28%. Significant differences between groups were observed in the stereotypic measure in all three challenges. The results indicate that these immunopharmacotherapeutic agents have significant cocaine-blockade potential and therefore may offer an effective strategy for the treatment of cocaine abuse.
Resumo:
A major concern associated with the use of vaccines based on live-attenuated viruses is the possible and well documented reversion to pathogenic phenotypes. In the case of HIV, genomic deletions or mutations introduced to attenuate viral pathogenicity can be repaired by selection of compensating mutations. These events lead to increased virus replication rates and, eventually, disease progression. Because replication competence and degree of protection appear to be directly correlated, further attenuation of a vaccine virus may compromise the ability to elicit a protective immune response. Here, we describe an approach toward a safe attenuated HIV vaccine. The system is not based on permanent reduction of infectivity by alteration of important viral genomic sequences, but on strict control of replication through the insertion of the tetracycline (Tet) system in the HIV genome. Furthermore, extensive in vitro evolution was applied to the prototype Tet-controlled HIV to select for variants with optimized rather than diminished replication capacity. The final product of evolution has properties uniquely suited for use as a vaccine strain. The evolved virus is highly infectious, as opposed to a canonically attenuated virus. It replicates efficiently in T cell lines and in activated and unstimulated peripheral blood mononuclear cells. Most importantly, replication is strictly dependent on the nontoxic Tetanalogue doxycycline and can be turned on and off. These results suggest that this in vitro evolved, doxycycline-dependent HIV might represent a useful tool toward the development of a safer, live-attenuated HIV vaccine.