996 resultados para ANNULAR MODE
Resumo:
We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2012 OSA.
Resumo:
We present the first monolithically integrated semiconductor pulse source consisting of a mode-locked laser diode, Mach-Zehnder pulse picker, and semiconductor optical amplifier. Pairs of 5.6 ps pulses are generated at a 250 MHz repetition rate. © 2012 OSA.
Resumo:
A mode-locked Raman laser, using 25 m of a GeO2 doped fiber as the gain medium, is reported employing carbon nanotubes. The oscillator generates 850 ps chirped pulses, which are externally compressed to 185 ps. © 2012 OSA.
Resumo:
A monolithically integrated MLLD-modulator-MOPA is presented generating 12.5 ps pulses. The Mach-Zehnder modulator allows tunable repetition rates from 14 GHz to 109 MHz, and the MOPA boosts the peak power by 3.2 dB. © 2012 IEEE.
Resumo:
Employing a nanotube-based saturable absorber, we demonstrate a continuously tunable (1533-1563nm) ultrafast fiber laser, with output pulsewidth switchable between picosecond (1.2 ps) and femtosecond (610 fs) regimes. © 2012 IEEE.
Resumo:
We demonstrate a dual-wavelength, carbon nanotube mode-locked Er fiber laser. The laser outputs two wavelengths at 1549nm and 1562nm, and each wavelength corresponds to pulse duration of ∼1.3ps and repetition rate of ∼11.27MHz. © 2012 IEEE.
Resumo:
We report a 2 μm ultrafast solid-state Tm: Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼ 410 fs pulses, with a spectral width ∼ 11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing. © 2013 American Institute of Physics.
Resumo:
In this paper the global flame dynamics of a model annular gas turbine combustor undergoing strong self-excited circumferential instabilities is presented. The combustor consisted of either 12, 15 or 18 turbulent premixed bluff-body flames arranged around an annulus of fixed circumference so that the effect of flame separation distance, S, on the global heat release dynamics could be investigated. Reducing S was found to produce both an increase in the resonant frequency and the limit-cycle amplitudes of pressure and heat release for the same equivalence ratio. The phase-averaged global heat release, obtained from high-speed OH- chemiluminescence imaging from above, showed that these changes are caused by large-scale modifications to the flame structure around the annulus. For the largest S studied (12 flame configuration) the azimuthal instability produced a helical-like global heat release structure for each flame. When S was decreased, large-scale merging or linking between adjacent flames occurred spanning approximately half of the annulus with the peak heat release concentrated at the outer annular wall. The circumferential nature of the instability was evident from both the pressure measurements and the phase-averaged OH- chemiluminescence showing the phase of the heat release on either side of the annulus to be ≈180°apart and spinning in the counter clockwise direction. Both spinning and standing modes were found but only spinning modes are considered in this paper. To the best of the authors knowledge, these are the first experiments to provide a phase-averaged picture of self-excited azimuthal instabilities in a laboratory-scale annular combustor relevant to gas turbines. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Abstract (40-Word Limit): A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2x2 MIMO link at carrier frequencies up to 6GHz.