808 resultados para ALLIUM SATIVUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two genes coding for S-adenosyl-l-methionine synthase (SAMS, EC 2.5.1.6) were previously isolated from pea (Pisum sativum) ovaries. Both SAMS genes were highly homologous throughout their coding regions but showed a certain degree of sequence divergence within the 5′ and the 3′ untranslated regions. These regions have been used as gene-specific probes to analyze the differential expression of SAMS1 and SAMS2 genes in pea plants. The ribonuclease protection assay revealed different expression patterns for each individual gene. SAMS1 was strongly expressed in nearly all tissues, especially in roots. SAMS2 expression was weaker, reaching its highest level at the apex. Following pollination, SAMS1 was specifically up-regulated, whereas SAMS2 was expressed constitutively. The up-regulation of SAMS1 during ovary development was also observed in unpollinated ovaries treated with auxins. In unpollinated ovaries an increase in SAMS1 expression was observed as a consequence of ethylene production associated with the emasculation process. In senescing ovaries both SAMS1 and SAMS2 genes showed increased expression. Ethylene treatment of unpollinated ovaries led to an increase in the SAMS1 mRNA level. However, SAMS2 expression remained unchangeable after ethylene treatment, indicating that SAMS2 induction during ovary senescence was not ethylene dependent. SAMS mRNAs were localized by in situ hybridization at the endocarp of developing fruits and in the ovules of senescing ovaries. Our results indicate that the transcriptional regulation of SAMS genes is developmentally controlled in a specific way for each gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The de-epoxidation of violaxanthin to antheraxanthin (Anth) and zeaxanthin (Zeax) in the xanthophyll cycle of higher plants and the generation of nonphotochemical fluorescence quenching in the antenna of photosystem II (PSII) are induced by acidification of the thylakoid lumen. Dicyclohexylcarbodiimide (DCCD) has been shown (a) to bind to lumen-exposed carboxy groups of antenna proteins and (b) to inhibit the pH-dependent fluorescence quenching. The possible influence of DCCD on the de-epoxidation reactions has been investigated in isolated pea (Pisum sativum L.) thylakoids. The Zeax formation was found to be slowed down in the presence of DCCD. The second step (Anth → Zeax) of the reaction sequence seemed to be more affected than the violaxanthin → Anth conversion. Comparative studies with antenna-depleted thylakoids from plants grown under intermittent light and with unstacked thylakoids were in agreement with the assumption that binding of DCCD to antenna proteins is probably responsible for the retarded kinetics. Analyses of the DCCD-induced alterations in different antenna subcomplexes showed that Zeax formation in the PSII antenna proteins was predominantly influenced by DCCD, whereas Zeax formation in photosystem I was nearly unaffected. Our data support the suggestion that DCCD binding to PSII antenna proteins is responsible for the observed alterations in xanthophyll conversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of ultraviolet-B (UV-B) radiation on water relations, leaf development, and gas-exchange characteristics in pea (Pisum sativum L. cv Meteor) plants subjected to drought were investigated. Plants grown throughout their development under a high irradiance of UV-B radiation (0.63 W m−2) were compared with those grown without UV-B radiation, and after 12 d one-half of the plants were subjected to 24 d of drought that resulted in mild water stress. UV-B radiation resulted in a decrease of adaxial stomatal conductance by approximately 65%, increasing stomatal limitation of CO2 uptake by 10 to 15%. However, there was no loss of mesophyll light-saturated photosynthetic activity. Growth in UV-B radiation resulted in large reductions of leaf area and plant biomass, which were associated with a decline in leaf cell numbers and cell division. UV-B radiation also inhibited epidermal cell expansion of the exposed surface of leaves. There was an interaction between UV-B radiation and drought treatments: UV-B radiation both delayed and reduced the severity of drought stress through reductions in plant water-loss rates, stomatal conductance, and leaf area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although it is well established that the plant host encodes and synthesizes the apoprotein for leghemoglobin in root nodules, the source of the heme moiety has been uncertain. We recently found that the transcript for coproporphyrinogen III oxidase, one of the later enzymes of heme synthesis, is highly elevated in soybean (Glycine max L.) nodules compared with roots. In this study we measured enzyme activity and carried out western-blot analysis and in situ hybridization of mRNA to investigate the levels during nodulation of the plant-specific coproporphyrinogen oxidase and four other enzymes of the pathway in both soybean and pea (Pisum sativum L.). We compared them with the activity found in leaves and uninfected roots. Our results demonstrate that all of these enzymes are elevated in the infected cells of nodules. Because these are the same cells that express apoleghemoglobin, the data strongly support a role for the plant in the synthesis of the heme moiety of leghemoglobin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reversibly glycosylated polypeptide from pea (Pisum sativum) is thought to have a role in the biosynthesis of hemicellulosic polysaccharides. We have investigated this hypothesis by isolating a cDNA clone encoding a homolog of Arabidopsis thaliana, Reversibly Glycosylated Polypeptide-1 (AtRGP1), and preparing antibodies against the protein encoded by this gene. Polyclonal antibodies detect homologs in both dicot and monocot species. The patterns of expression and intracellular localization of the protein were examined. AtRGP1 protein and RNA concentration are highest in roots and suspension-cultured cells. Localization of the protein shows it to be mostly soluble but also peripherally associated with membranes. We confirmed that AtRGP1 produced in Escherichia coli could be reversibly glycosylated using UDP-glucose and UDP-galactose as substrates. Possible sites for UDP-sugar binding and glycosylation are discussed. Our results are consistent with a role for this reversibly glycosylated polypeptide in cell wall biosynthesis, although its precise role is still unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Miller) fruit discs fed with [2,3-14C]1-aminocyclopropane-1-carboxylic acid (ACC) formed 1-malonyl-ACC (MACC) as the major conjugate of ACC in fruit throughout all ripening stages, from immature-green through the red-ripe stage. Another conjugate of ACC, γ-glutamyl-ACC (GACC), was formed only in mature-green fruit in an amount about 10% of that of MACC; conjugation of ACC into GACC was not detected in fruits at other ripening stages. No GACC formation was observed from etiolated mung bean (Vigna radiata [L.] Wilczek) hypocotyls, etiolated common vetch (Vicia sativum L.) epicotyls, or pea (Pisum sativum L.) root tips, etiolated epicotyls, and green stem tissue, where active conversion of ACC into MACC was observed. GACC was, however, formed in vitro in extracts from fruit of all ripening stages. GACC formation in an extract from red fruit at pH 7.15 was only about 3% of that at pH 8.0, the pH at which most assays were run. Our present in vivo data support the previous contention that MACC is the major conjugate of ACC in plant tissues, whereas GACC is a minor, if any, conjugate of ACC. Thus, our data do not support the proposal that GACC formation could be more important than MACC formation in tomato fruit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant accumulation of Fe and other metals can be enhanced under Fe deficiency. We investigated the influence of Fe status on heavy-metal and divalent-cation uptake in roots of pea (Pisum sativum L. cv Sparkle) seedlings using Cd2+ uptake as a model system. Radiotracer techniques were used to quantify unidirectional 109Cd influx into roots of Fe-deficient and Fe-sufficient pea seedlings. The concentration-dependent kinetics for 109Cd influx were graphically complex and nonsaturating but could be resolved into a linear component and a saturable component exhibiting Michaelis-Menten kinetics. We demonstrated that the linear component was apoplastically bound Cd2+ remaining in the root cell wall after desorption, whereas the saturable component was transporter-mediated Cd2+ influx across the root-cell plasma membrane. The Cd2+ transport system in roots of both Fe-deficient and Fe-sufficient seedlings exhibited similar Michaelis constant values, 1.5 and 0.6 μm, respectively, for saturable Cd2+ influx, whereas the maximum initial velocity for Cd2+ uptake in Fe-deficient seedlings was nearly 7-fold higher than that in Fe-grown seedlings. Investigations into the mechanistic basis for this response demonstrated that Fe-deficiency-induced stimulation of the plasma membrane H+-ATPase did not play a role in the enhanced Cd2+ uptake. Expression studies with the Fe2+ transporter cloned from Arabidopsis, IRT1, indicated that Fe deficiency induced the expression of this transporter, which might facilitate the transport of heavy-metal divalent cations such as Cd2+ and Zn2+, in addition to Fe2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants synthesize several classes of small (15- to 30-kD monomer) heat-shock proteins (sHSPs) in response to heat stress, including a nuclear-encoded, chloroplast-localized sHSP (HSP21). Cytosolic sHSPs exist as large oligomers (approximately 200–800 kD) composed solely or primarily of sHSPs. Phosphorylation of mammalian sHSPs causes oligomer dissociation, which appears to be important for regulation of sHSP function. We examined the native structure and phosphorylation of chloroplast HSP21 to understand this protein's basic properties and to compare it with cytosolic sHSPs. The apparent size of native HSP21 complexes was > 200 kD and they did not dissociate during heat stress. We found no evidence that HSP21 or the plant cytosolic sHSPs are phosphorylated in vivo. A partial HSP21 complex purified from heat-stressed pea (Pisum sativum L.) leaves contained no proteins other than HSP21. Mature recombinant pea and Arabidopsis thaliana HSP21 were expressed in Escherichia coli, and purified recombinant Arabidopsis HSP21 assembled into homo-oligomeric complexes with the same apparent molecular mass as HSP21 complexes observed in heat-stressed leaf tissue. We propose that the native, functional form of chloroplast HSP21 is a large, oligomeric complex containing nine or more HSP21 subunits, and that plant sHSPs are not regulated by phosphorylation-induced dissociation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epicuticular wax production was evaluated along the length of expanding leek (Allium porrum L.) leaves to gain insight into the regulation of wax production. Leaf segments from the bottom to the top were analyzed for (a) wax composition and load; (b) microsomal fatty acid elongase, plastidial fatty acid synthase, and acyl-acyl carrier protein (ACP) thioesterase activities; and (c) tissue and cellular morphological changes. The level of total wax, which was low at the bottom, increased 23-fold along the length of the leaf, whereas accumulation of the hentriacontan-16-one increased more than 1000-fold. The onset of wax accumulation was not linked to cell elongation but, rather, occurred several centimeters above the leaf base. Peak microsomal fatty acid elongation activity preceded the onset of wax accumulation, and the maximum fatty acid synthase activity was coincident with the onset. The C16:0- and C18:0-ACP-hydrolyzing activities changed relatively little along the leaf, whereas C18:1-ACP-hydrolyzing activity increased slightly prior to the peak elongase activity. Electron micrographic analyses revealed that wax crystal formation was asynchronous among cells in the initial stages of wax deposition, and morphological changes in the cuticle and cell wall preceded the appearance of wax crystals. These studies demonstrated that wax production and microsomal fatty acid elongation activities were induced within a defined and identifiable region of the expanding leek leaf and provide the foundation for future molecular studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the apical shoot as a source of inhibitors preventing fruit growth in the absence of a stimulus (e.g. pollination or application of gibberellic acid) has been investigated in pea (Pisum sativum L.). Plant decapitation stimulated parthenocarpic growth, even in derooted plants, and this effect was counteracted by the application of indole acetic acid (IAA) or abscisic acid (ABA) in agar blocks to the severed stump. The treatment of unpollinated ovaries with gibberellic acid blocked the effect of IAA or ABA applied to the stump. [3H]IAA and [3H]ABA applied to the stump were transported basipetally, and [3H]ABA but not [3H]IAA was also detected in unpollinated ovaries. The concentration of ABA in unpollinated ovaries increased significantly in the absence of a promotive stimulus. The application of IAA to the stump enhanced by 2- to 5-fold the concentration of ABA in the inhibited ovary, whereas the inhibition of IAA transport from the apical shoot by triiodobenzoic acid decreased the ovary content of ABA (to approximately one-half). Triiodobenzoic acid alone, however, was unable to stimulate ovary growth. Thus, in addition to removing IAA transport from the apical shoot, the accumulation of a promotive factor is also necessary to induce parthenocarpic growth in decapitated plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still unknown. Proteins binding to double-stranded oligonucleotides representing different parts of the pea (Pisum sativum) mitochondrial atp9 were analyzed by denaturation-renaturation chromatography and mobility-shift experiments. Two DNA-protein complexes were detected, which appeared to be sequence specific in competition experiments. Purification by hydroxyapatite, phosphocellulose, and reversed-phase high-pressure liquid chromatography separated two polypeptides with apparent molecular masses of 32 and 44 kD. Both proteins bound to conserved structures of the pea atp9 and the heterologous Oenothera berteriana atp1 promoters and to sequences just upstream. Possible functions of these proteins in mitochondrial promoter recognition are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mg-chelatase catalyzes the ATP-dependent insertion of Mg2+ into protoporphyrin-IX to form Mg-protoporphyrin-IX. This is the first step unique to chlorophyll synthesis, and it lies at the branch point for porphyrin utilization; the other branch leads to heme. Using the stromal fraction of pea (Pisum sativum L. cv Spring) chloroplasts, we have prepared Mg-chelatase in a highly active (1000 pmol 30 min−1 mg−1) and stable form. The reaction had a lag in the time course, which was overcome by preincubation with ATP. The concentration curves for ATP and Mg2+ were sigmoidal, with apparent Km values for Mg2+ and ATP of 14.3 and 0.35 mm, respectively. The Km for deuteroporphyrin was 8 nm. This Km is 300 times lower than the published porphyrin Km for ferrochelatase. The soluble extract was separated into three fractions by chromatography on blue agarose, followed by size-selective centrifugal ultrafiltration of the column flow-through. All three fractions were required for activity, clearly demonstrating that the plant Mg-chelatase requires at least three protein components. Additionally, only two of the components were required for activation; both were contained in the flow-through from the blue-agarose column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cDNA of pea (Pisum sativum L.) RbcS 3A, encoding a small subunit protein (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), has been expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter, and the transcript and mature S protein were detected. Specific antibodies revealed two protein spots for the four Arabidopsis S and one additional spot for pea S. Pea S in chimeric Rubisco amounted to 15 to 18% of all S, as judged by separation on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels from partially purified enzyme preparations and quantitation of silver-stained protein spots. The chimeric enzyme had 11 ± 1% fewer carbamylated sites and a 11 ± 1% lower carboxylase activity than wild-type Arabidopsis Rubisco. Whereas pea S expression, preprotein transport, and processing and assembly resulted in a stable holoenzyme, the chimeric enzyme was reproducibly catalytically less efficient. We suggest that the presence of, on average, one foreign S per holoenzyme is responsible for the altered activity. In addition, higher-plant Rubisco, unlike the cyanobacterial enzyme, seems to have evolved species-specific interactions between S and the large subunit protein that are involved in carbamylation of the active site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies were conducted to identify a 64-kD thylakoid membrane protein of unknown function. The protein was extracted from chloroplast thylakoids under low ionic strength conditions and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four peptides generated from the proteolytic cleavage of the wheat 64-kD protein were sequenced and found to be identical to internal sequences of the chloroplast-coupling factor (CF1) α-subunit. Antibodies for the 64-kD protein also recognized the α-subunit of CF1. Both the 64-kD protein and the 61-kD CF1 α-subunit were present in the monocots barley (Hordeum vulgare), maize (Zea mays), oat (Avena sativa), and wheat (Triticum aestivum); but the dicots pea (Pisum sativum), soybean (Glycine max Merr.), and spinach (Spinacia oleracea) contained only a single polypeptide corresponding to the CF1 α-subunit. The 64-kD protein accumulated in response to high irradiance (1000 μmol photons m−2 s−1) and declined in response to low irradiance (80 μmol photons m−2 s−1) treatments. Thus, the 64-kD protein was identified as an irradiance-dependent isoform of the CF1 α-subunit found only in monocots. Analysis of purified CF1 complexes showed that the 64-kD protein represented up to 15% of the total CF1 α-subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virus invasion of minor veins in inoculated leaves of a host is the likely prelude to systemic movement of the pathogen and to subsequent yield reduction and quality loss. In this study we have analyzed the cell number and arrangement in minor veins within mature leaves of various members of the Solanaceae and Fabaceae families. We then monitored the accumulation pattern of several tobamoviruses and potyviruses in these veins at the time of rapid, phloem-mediated movement of viruses. Vascular parenchyma cells were the predominant and sometimes only cells to become visibly infected among the cells surrounding the sieve elements in minor veins containing 9 to 12 cells. In no instance did we observe a companion cell infected without a vascular parenchyma cell also being infected in the same vein. This suggests that the viruses used in this study first enter the vascular parenchyma cells and then the companion cells during invasion. The lack of detectable infection of smooth-walled companion or transfer cells, respectively, from inoculated leaves of bean (Phaseolus vulgaris) and pea (Pisum sativum) during a period of known rapid, phloem-mediated movement suggests that some viruses may be able to circumvent these cells in establishing phloem-mediated infection. The cause of the barrier to virus accumulation in the companion or transfer cells, the relationship of this barrier to previously identified barriers for virus or photoassimilate transport, and the relevance of these findings to photoassimilate transport models are discussed.