952 resultados para ADENOSINE-MONOPHOSPHATE
Resumo:
Abamectin (ABA), which belongs to the family of avermectins, is used as a parasiticide; however, ABA poisoning can impair liver function. In a previous study using isolated rat liver mitochondria, we observed that ABA inhibited the activity of adenine nucleotide translocator and FoF1-ATPase. The aim of this study was to characterize the mechanism of ABA toxicity in isolated rat hepatocytes and to evaluate whether this effect is dependent on its metabolism. The toxicity of ABA was assessed by monitoring oxygen consumption and mitochondrial membrane potential, intracellular ATP concentration, cell viability, intracellular Ca2+ homeostasis, release of cytochrome c, caspase 3 activity and necrotic cell death. ABA reduces cellular respiration in cells energized with glutamate and malate or succinate. The hepatocytes that were previously incubated with proadifen, a cytochrome P450 inhibitor, are more sensitive to the compound as observed by a rapid decrease in the mitochondrial membrane potential accompanied by reductions in ATP concentration and cell viability and a disruption of intracellular Ca2+ homeostasis followed by necrosis. Our results indicate that ABA biotransformation reduces its toxicity, and its toxic action is related to the inhibition of mitochondrial activity, which leads to decreased synthesis of ATP followed by cell death. © 2012 Elsevier Ltd.
Resumo:
Fatty acids are the main substrates used by mitochondria to provide myocardial energy under normal conditions. During heart remodeling, however, the fuel preference switches to glucose. In the earlier stages of cardiac remodeling, changes in energy metabolism are considered crucial to protect the heart from irreversible damage. Furthermore, low fatty acid oxidation and the stimulus for glycolytic pathway lead to lipotoxicity, acidosis, and low adenosine triphosphate production. While myocardial function is directly associated with energy metabolism, the metabolic pathways could be potential targets for therapy in heart failure. © 2013 by Lippincott Williams & Wilkins.
Resumo:
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.
Resumo:
The stimulation by Mg2+, Na+, K+, NH 4 +, and ATP of (Na+, K+)-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na +, K+)-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg2+, Na+, and K+ concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V M = 115.0 ± 2.3 U mg-1, K 0.5 = 0.10 ± 0.01 mmol L-1. Stimulation by Na+ (V M = 110.0 ± 3.3 U mg-1, K 0.5 = 1.30 ± 0.03 mmol L -1), Mg2+ (V M = 115.0 ± 4.6 U mg -1, K 0.5 = 0.96 ± 0.03 mmol L-1), NH4 + (V M = 141.0 ± 5.6 U mg -1, K 0.5 = 1.90 ± 0.04 mmol L-1), and K+ (V M = 120.0 ± 2.4 U mg-1, K M = 2.74 ± 0.08 mmol L-1) followed single saturation curves and, except for K+, exhibited site-site interaction kinetics. Ouabain inhibited ATPase activity by around 73 % with K I = 12.4 ± 1.3 mol L-1. Complementary inhibition studies suggest the presence of F0F1-, Na+-, or K +-ATPases, but not V(H+)- or Ca2+-ATPases, in the gill microsomal preparation. K+ and NH4 + synergistically stimulated enzyme activity (≈25 %), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4 +, and K+ of the gill enzyme. © 2013 Springer Science+Business Media New York.
Resumo:
The ecotoxicology of nano-TiO2 has been extensively studied in recent years; however, few toxicological investigations have considered the photocatalytic properties of the substance, which can increase its toxicity to aquatic biota. The aim of this work was to evaluate the effects on fish exposed to different nano-TiO2 concentrations and illumination conditions. The interaction of these variables was investigated by observing the survival of the organisms, together with biomarkers of biochemical and genetic alterations. Fish (Piaractus mesopotamicus) were exposed for 96h to 0, 1, 10, and 100mg/L of nano-TiO2, under visible light, and visible light with ultraviolet (UV) light (22.47J/cm2/h). The following biomarkers of oxidative stress were monitored in the liver: concentrations of lipid hydroperoxide and carbonylated protein, and specific activities of superoxide dismutase, catalase, and glutathione S-transferase. Other biomarkers of physiological function were also studied: the specific activities of acid phosphatase and Na,K-ATPase were analyzed in the liver and brain, respectively, and the concentration of metallothionein was measured in the gills. In addition, micronucleus and comet assays were performed with blood as genotoxic biomarkers. Nano-TiO2 caused no mortality under any of the conditions tested, but induced sublethal effects that were influenced by illumination condition. Under both illumination conditions tested, exposure to 100mg/L showed an inhibition of acid phosphatase activity. Under visible light, there was an increase in metallothionein level in fish exposed to 1mg/L of nano-TiO2. Under UV light, protein carbonylation was reduced in groups exposed to 1 and 10mg/L, while nucleus alterations in erythrocytes were higher in fish exposed to 10mg/L. As well as improving the understanding of nano-TiO2 toxicity, the findings demonstrated the importance of considering the experimental conditions in nanoecotoxicological tests. This work provides information for the development of protocols to study substances whose toxicity is affected by illumination conditions. © 2013 Elsevier B.V..
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
O fator de crescimento do nervo (NGF) pode retardar a degeneração celular na retina de ratos em diferentes injúrias retinianas. O acúmulo de água em células da retina contribui para o desenvolvimento de edema retiniano e degeneração neuronal. Em atribuição ao seu efeito protetor, este trabalho teve por objetivo avaliar se o NGF influencia o edema celular osmótico em células de Müller e células bipolares. Assim, montagens planas, fatias de retina e células isoladas da retina de ratos foram superfundidas com solução hipo-osmótica na presença de BaCl2. Secções retinianas foram utilizadas para imunomarcações, e a liberação de adenosina foi medida por cromatografia líquida de alta eficácia, em montagens planas. A área de secção transversal celular foi medida antes e após a superfusão em meio hipo-osmótico, em fatias de retina e suspensões celulares. Tanto células de Müller quanto células bipolares foram imunopositivas para TrkA, mas somente células de Müller foram marcadas contra p75NTR e NGF. A hipo-osmolaridade induziu um rápido e significativo aumento da liberação de adenosina endógena em retinas controle, mas não em retinas perfundidas com BaCl2. O NGF inibiu o edema citotóxico em células de Müller e em células bipolares em fatias de retina controle e retinas pós-isquêmicas submetidas a condições hipo-osmóticas. Por outro lado, NGF impediu o edema citotóxico da célula de Müller isolada, mas não da célula bipolar isolada (em meio hipo-osmótico contendo íons Ba2+). Isto sugere que NGF induz a liberação de fatores por células de Müller, os quais inibem o edema citotóxico de células bipolares em fatias de retina. O efeito inibitório do NGF sobre o edema citotóxico de células de Müller foi mediado pela ativação do receptor TrkA, mas não de p75NTR, e foi anulado por bloqueadores de receptores metabotrópicos de glutamato, receptores de adenosina A1, e receptores do fator de crescimento de fibroblasto (FGF). O bFGF evitou o edema citotóxico de células de Müller isoladas, mas inibiu somente em parte o edema citotóxico de células bipolares isoladas. O bloqueio de FGFR impediu o efeito inibidor de edema celular da adenosina, sugerindo que a liberação de bFGF ocorre após à ativação autócrina/parácrina de receptores Al. Além de bFGF, GDNF e TGF431 reduziram em parte o edema citotóxico da célula bipolar. Estes dados sugerem que o efeito neuroprotetor do NGF é em parte mediado pela prevenção de edema citotóxico de células gliais e bipolares da retina.