980 resultados para 88-581B
Resumo:
Many drivers in highly motorised countries believe that aggressive driving is increasing. While the prevalence of the behaviour is difficult to reliably identify, the consequences of on-road aggression can be severe, with extreme cases resulting in property damage, injury and even death. This research program was undertaken to explore the nature of aggressive driving from within the framework of relevant psychological theory in order to enhance our understanding of the behaviour and to inform the development of relevant interventions. To guide the research a provisional ‘working’ definition of aggressive driving was proposed encapsulating the recurrent characteristics of the behaviour cited in the literature. The definition was: “aggressive driving is any on-road behaviour adopted by a driver that is intended to cause physical or psychological harm to another road user and is associated with feelings of frustration, anger or threat”. Two main theoretical perspectives informed the program of research. The first was Shinar’s (1998) frustration-aggression model, which identifies both the person-related and situational characteristics that contribute to aggressive driving, as well as proposing that aggressive behaviours can serve either an ‘instrumental’ or ‘hostile’ function. The second main perspective was Anderson and Bushman’s (2002) General Aggression Model. In contrast to Shinar’s model, the General Aggression Model reflects a broader perspective on human aggression that facilitates a more comprehensive examination of the emotional and cognitive aspects of aggressive behaviour. Study One (n = 48) examined aggressive driving behaviour from the perspective of young drivers as an at-risk group and involved conducting six focus groups, with eight participants in each. Qualitative analyses identified multiple situational and person-related factors that contribute to on-road aggression. Consistent with human aggression theory, examination of self-reported experiences of aggressive driving identified key psychological elements and processes that are experienced during on-road aggression. Participants cited several emotions experienced during an on-road incident: annoyance, frustration, anger, threat and excitement. Findings also suggest that off-road generated stress may transfer to the on-road environment, at times having severe consequences including crash involvement. Young drivers also appeared quick to experience negative attributions about the other driver, some having additional thoughts of taking action. Additionally, the results showed little difference between males and females in the severity of behavioural responses they were prepared to adopt, although females appeared more likely to displace their negative emotions. Following the self-reported on-road incident, evidence was also found of a post-event influence, with females being more likely to experience ongoing emotional effects after the event. This finding was evidenced by ruminating thoughts or distraction from tasks. However, the impact of such a post-event influence on later behaviours or interpersonal interactions appears to be minimal. Study Two involved the quantitative analysis of n = 926 surveys completed by a wide age range of drivers from across Queensland. The study aimed to explore the relationships between the theoretical components of aggressive driving that were identified in the literature review, and refined based on the findings of Study One. Regression analyses were used to examine participant emotional, cognitive and behavioural responses to two differing on-road scenarios whilst exploring the proposed theoretical framework. A number of socio-demographic, state and trait person-related variables such as age, pre-study emotions, trait aggression and problem-solving style were found to predict the likelihood of a negative emotional response such as frustration, anger, perceived threat, negative attributions and the likelihood of adopting either an instrumental or hostile behaviour in response to Scenarios One and Two. Complex relationships were found to exist between the variables, however, they were interpretable based on the literature review findings. Factor analysis revealed evidence supporting Shinar’s (1998) dichotomous description of on-road aggressive behaviours as being instrumental or hostile. The second stage of Study Two used logistic regression to examine the factors that predicted the potentially hostile aggressive drivers (n = 88) within the sample. These drivers were those who indicated a preparedness to engage in direct acts of interpersonal aggression on the road. Young, male drivers 17–24 years of age were more likely to be classified as potentially hostile aggressive drivers. Young drivers (17–24 years) also scored significantly higher than other drivers on all subscales of the Aggression Questionnaire (Buss & Perry, 1992) and on the ‘negative problem orientation’ and ‘impulsive careless style’ subscales of the Social Problem Solving Inventory – Revised (D’Zurilla, Nezu & Maydeu-Olivares, 2002). The potentially hostile aggressive drivers were also significantly more likely to engage in speeding and drink/drug driving behaviour. With regard to the emotional, cognitive and behavioural variables examined, the potentially hostile aggressive driver group also scored significantly higher than the ‘other driver’ group on most variables examined in the proposed theoretical framework. The variables contained in the framework of aggressive driving reliably distinguished potentially hostile aggressive drivers from other drivers (Nagalkerke R2 = .39). Study Three used a case study approach to conduct an in-depth examination of the psychosocial characteristics of n = 10 (9 males and 1 female) self-confessed hostile aggressive drivers. The self-confessed hostile aggressive drivers were aged 24–55 years of age. A large proportion of these drivers reported a Year 10 education or better and average–above average incomes. As a group, the drivers reported committing a number of speeding and unlicensed driving offences in the past three years and extensive histories of violations outside of this period. Considerable evidence was also found of exposure to a range of developmental risk factors for aggression that may have contributed to the driver’s on-road expression of aggression. These drivers scored significantly higher on the Aggression Questionnaire subscales and Social Problem Solving Inventory Revised subscales, ‘negative problem orientation’ and ‘impulsive/careless style’, than the general sample of drivers included in Study Two. The hostile aggressive driver also scored significantly higher on the Barrett Impulsivity Scale – 11 (Patton, Stanford & Barratt, 1995) measure of impulsivity than a male ‘inmate’, or female ‘general psychiatric’ comparison group. Using the Carlson Psychological Survey (Carlson, 1982), the self-confessed hostile aggressive drivers scored equal or higher scores than the comparison group of incarcerated individuals on the subscale measures of chemical abuse, thought disturbance, anti-social tendencies and self-depreciation. Using the Carlson Psychological Survey personality profiles, seven participants were profiled ‘markedly anti-social’, two were profiled ‘negative-explosive’ and one was profiled as ‘self-centred’. Qualitative analysis of the ten case study self-reports of on-road hostile aggression revealed a similar range of on-road situational factors to those identified in the literature review and Study One. Six of the case studies reported off-road generated stress that they believed contributed to the episodes of aggressive driving they recalled. Intense ‘anger’ or ‘rage’ were most frequently used to describe the emotions experienced in response to the perceived provocation. Less frequently ‘excitement’ and ‘fear’ were cited as relevant emotions. Notably, five of the case studies experienced difficulty articulating their emotions, suggesting emotional difficulties. Consistent with Study Two, these drivers reported negative attributions and most had thoughts of aggressive actions they would like to take. Similarly, these drivers adopted both instrumental and hostile aggressive behaviours during the self-reported incident. Nine participants showed little or no remorse for their behaviour and these drivers also appeared to exhibit low levels of personal insight. Interestingly, few incidents were brought to the attention of the authorities. Further, examination of the person-related characteristics of these drivers indicated that they may be more likely to have come from difficult or dysfunctional backgrounds and to have a history of anti-social behaviours on and off the road. The research program has several key theoretical implications. While many of the findings supported Shinar’s (1998) frustration-aggression model, two key areas of difference emerged. Firstly, aggressive driving behaviour does not always appear to be frustration driven, but can also be driven by feelings of excitation (consistent with the tenets of the General Aggression Model). Secondly, while the findings supported a distinction being made between instrumental and hostile aggressive behaviours, the characteristics of these two types of behaviours require more examination. For example, Shinar (1998) proposes that a driver will adopt an instrumental aggressive behaviour when their progress is impeded if it allows them to achieve their immediate goals (e.g. reaching their destination as quickly as possible); whereas they will engage in hostile aggressive behaviour if their path to their goal is blocked. However, the current results question this assertion, since many of the hostile aggressive drivers studied appeared prepared to engage in hostile acts irrespective of whether their goal was blocked or not. In fact, their behaviour appeared to be characterised by a preparedness to abandon their immediate goals (even if for a short period of time) in order to express their aggression. The use of the General Aggression Model enabled an examination of the three components of the ‘present internal state’ comprising emotions, cognitions and arousal and how these influence the likelihood of a person responding aggressively to an on-road situation. This provided a detailed insight into both the cognitive and emotional aspects of aggressive driving that have important implications for the design of relevant countermeasures. For example, the findings highlighted the potential value of utilising Cognitive Behavioural Therapy with aggressive drivers, particularly the more hostile offenders. Similarly, educational efforts need to be mindful of the way that person-related factors appear to influence one’s perception of another driver’s behaviour as aggressive or benign. Those drivers with a predisposition for aggression were more likely to perceive aggression or ‘wrong doing’ in an ambiguous on-road situation and respond with instrumental and/or hostile behaviour, highlighting the importance of perceptual processes in aggressive driving behaviour.
Resumo:
Background Not all cancer patients receive state-of-the-art care and providing regular feedback to clinicians might reduce this problem. The purpose of this study was to assess the utility of various data sources in providing feedback on the quality of cancer care. Methods Published clinical practice guidelines were used to obtain a list of processes-of-care of interest to clinicians. These were assigned to one of four data categories according to their availability and the marginal cost of using them for feedback. Results Only 8 (3%) of 243 processes-of-care could be measured using population-based registry or administrative inpatient data (lowest cost). A further 119 (49%) could be measured using a core clinical registry, which contains information on important prognostic factors (e.g., clinical stage, physiological reserve, hormone-receptor status). Another 88 (36%) required an expanded clinical registry or medical record review; mainly because they concerned long-term management of disease progression (recurrences and metastases) and 28 (11.5%) required patient interview or audio-taping of consultations because they involved information sharing between clinician and patient. Conclusion The advantages of population-based cancer registries and administrative inpatient data are wide coverage and low cost. The disadvantage is that they currently contain information on only a few processes-of-care. In most jurisdictions, clinical cancer registries, which can be used to report on many more processes-of-care, do not cover smaller hospitals. If we are to provide feedback about all patients, not just those in larger academic hospitals with the most developed data systems, then we need to develop sustainable population-based data systems that capture information on prognostic factors at the time of initial diagnosis and information on management of disease progression.
Resumo:
Background: Medication-related problems often occur in the immediate post-discharge period. To reduce medication misadventure the Commonwealth Government funds home medicines reviews (HMRs). HMRs are initiated when general practitioners refer consenting patients to their community pharmacists, who then engage accredited pharmacists to review patients' medicines in their homes. Aim: To determine if hospital-initiated medication reviews (HIMRs) can be implemented in a more timely manner than HMRs; and to assess the impact of a bespoke referral form with comorbidity-specific questions on the quality of reports. Method: Eligible medical inpatients at risk of medication misadventure were referred by the hospital liaison pharmacist to participating accredited pharmacists post-discharge from hospital. Social, demographic and laboratory data were collected from medical records and during interviews with consenting patients. Issues raised in the HIMR reports were categorised: intervention/action, information given or recommendation, and assigned a rank of clinical significance. Results: HIMRs were conducted within 11.6 6.6 days postdischarge. 36 HIMR reports were evaluated and 1442 issues identified - information given (n = 1204), recommendations made (n = 88) and actions taken (n = 150). The majority of issues raised (89%) had a minor clinical impact. The bespoke referral form prompted approximately half of the issues raised. Conclusion: HIMRs can be facilitated in a more timely manner than post-discharge HMRs. There was an associated positive clinical impact of issues raised in the HIMR reports.
Resumo:
Aims The aim of this cross sectional study is to explore levels of physical activity and sitting behaviour amongst a sample of pregnant Australian women (n = 81), and investigate whether reported levels of physical activity and/or time spent sitting were associated with depressive symptom scores after controlling for potential covariates. Methods Study participants were women who attended the antenatal clinic of a large Brisbane maternity hospital between October and November 2006. Data relating to participants. current levels of physical activity, sitting behaviour, depressive symptoms, demographic characteristics and exposure to known risk factors for depression during pregnancy were collected; via on-site survey, follow-up telephone interview (approximately one week later) and post delivery access to participant hospital records. Results Participants were aged 29.5 (¡¾ 5.6) years and mostly partnered (86.4%) with a gross household income above $26,000 per annum (88.9%). Levels of physical activity were generally low, with only 28.4 % of participants reporting sufficient total activity and 16% of participants reporting sufficient planned (leisure-time) activity. The sample mean for depressive symptom scores measured by the Hospital Anxiety and Depression Scale (HADS-D) was 6.38 (¡¾ 2.55). The mean depressive symptom scores for participants who reported total moderate-to-vigorous activity levels of sufficient, insufficient, and none, were 5.43 (¡¾ 1.56), 5.82 (¡¾ 1.77) and 7.63 (¡¾ 3.25), respectively. Hierarchical multivariable linear regression modelling indicated that after controlling for covariates, a statistically significant difference of 1.09 points was observed between mean depressive symptom scores of participants who reported sufficient total physical activity, compared with participants who reported they were engaging in no moderate-to-vigorous activity in a typical week (p = 0.05) but this did not reach the criteria for a clinically meaningful difference. Total physical activity was contributed 2.2% to the total 30.3% of explained variance within this model. The other main contributors to explained variance in multivariable regression models were anxiety symptom scores and the number of existing children. Further, a trend was observed between higher levels of planned sitting behaviour and higher depressive symptom scores (p = 0.06); this correlation was not clinically meaningful. Planned sitting contributed 3.2% to the total 31.3 % of explained variance. The number of regression covariates and limited sample size led to a less than ideal ratio of covariates to participants, probably attenuating this relationship. Specific information about the sitting-based activities in which participants engaged may have provided greater insight about the relationship between planned sitting and depressive symptoms, but these data were not captured by the present study. Conclusions The finding that higher levels of physical activity were associated with lower levels of depressive symptoms is consistent with the current body of existing literature in pregnant women, and with a larger body of evidence based in general population samples. Although this result was not considered clinically meaningful, the criterion for a clinically meaningful result was an a priori decision based on quality of life literature in non-pregnant populations and may not truly reflect a difference in symptoms that is meaningful to pregnant women. Further investigation to establish clinically meaningful criteria for continuous depressive symptom data in pregnant women is required. This result may have implications relating to prevention and management options for depression during pregnancy. The observed trend between planned sitting and depressive symptom scores is consistent with literature based on leisure-time sitting behaviour in general population samples, and suggests that further research in this area, with larger samples of pregnant women and more specific sitting data is required to explore potential associations between activities such as television viewing and depressive symptoms, as this may be an area of behaviour that is amenable to modification.
Resumo:
Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.
Resumo:
The CDKN2 gene, encoding the cyclin-dependent kinase inhibitor p16, is a tumour suppressor gene that maps to chromosome band 9p21-p22. The most common mechanism of inactivation of this gene in human cancers is through homozygous deletion; however, in a smaller proportion of tumours and tumour cell lines intragenic mutations occur. In this study we have compiled a database of over 120 published point mutations in the CDKN2 gene from a wide variety of tumour types. A further 50 deletions, insertions, and splice mutations in CDKN2 have also been compiled. Furthermore, we have standardised the numbering of all mutations according to the full-length 156 amino acid form of p16. From this study we are able to define several hot spots, some of which occur at conserved residues within the ankyrin domains of p16. While many of the hotspots are shared by a number of cancers, the relative importance of each position varies, possibly reflecting the role of different carcinogens in the development of certain tumours. As reported previously, the mutational spectrum of CDKN2 in melanomas differs from that of internal malignancies and supports the involvement of UV in melanoma tumorigenesis. Notably, 52% of all substitutions in melanoma-derived samples occurred at just six nucleotide positions. Nonsense mutations comprise a comparatively high proportion of mutations present in the CDKN2 gene, and possible explanations for this are discussed.
Resumo:
Purpose. To determine how Developmental Eye Movement (DEM) test results relate to reading eye movement patterns recorded with the Visagraph in visually normal children, and whether DEM results and recorded eye movement patterns relate to standardized reading achievement scores. Methods. Fifty-nine school-age children (age = 9.7 ± 0.6 years) completed the DEM test and had eye movements recorded with the Visagraph III test while reading for comprehension. Monocular visual acuity in each eye and random dot stereoacuity were measured and standardized scores on independently administered reading comprehension tests [reading progress test (RPT)] were obtained. Results. Children with slower DEM horizontal and vertical adjusted times tended to have slower reading rates with the Visagraph (r = -0.547 and -0.414 respectively). Although a significant correlation was also found between the DEM ratio and Visagraph reading rate (r = -0.368), the strength of the relationship was less than that between DEM horizontal adjusted time and reading rate. DEM outcome scores were not significantly associated with RPT scores. When the relative contribution of reading ability (RPT) and DEM scores was accounted for in multivariate analysis, DEM outcomes were not significantly associated with Visagraph reading rate. RPT scores were associated with Visagraph outcomes of duration of fixations (r = -0.403) and calculated reading rate (r = 0.366) but not with DEM outcomes. Conclusions.DEM outcomes can identify children whose Visagraph recorded eye movement patterns show slow reading rates. However, when reading ability is accounted for, DEM outcomes are a poor predictor of reading rate. Visagraph outcomes of duration of fixation and reading rate relate to standardized reading achievement scores; however, DEM results do not. Copyright © 2011 American Academy of Optometry.
Resumo:
High levels of sitting have been linked with poor health outcomes. Previously a pragmatic MTI accelerometer data cut-point (100 count/min-1) has been used to estimate sitting. Data on the accuracy of this cut-point is unavailable. PURPOSE: To ascertain whether the 100 count/min-1 cut-point accurately isolates sitting from standing activities. METHODS: Participants fitted with an MTI accelerometer were observed performing a range of sitting, standing, light & moderate activities. 1-min epoch MTI data were matched to observed activities, then re-categorized as either sitting or not using the 100 count/min-1 cut-point. Self-report demographics and current physical activity were collected. Generalized estimating equation for repeated measures with a binary logistic model analyses (GEE), corrected for age, gender and BMI, were conducted to ascertain the odds of the MTI data being misclassified. RESULTS: Data were from 26 healthy subjects (8 men; 50% aged <25 years; mean BMI (SD) 22.7(3.8)m/kg2). MTI sitting and standing data mode was 0 count/min-1, with 46% of sitting activities and 21% of standing activities recording 0 count/min-1. The GEE was unable to accurately isolate sitting from standing activities using the 100 count/min-1 cut-point, since all sitting activities were incorrectly predicted as standing (p=0.05). To further explore the sensitivity of MTI data to delineate sitting from standing, the upper 95% confidence interval of the mean for the sitting activities (46 count/min-1) was used to re-categorise the data; this resulted in the GEE correctly classifying 49% of sitting, and 69% of standing activities. Using the 100 count/min-1 cut-point the data were re-categorised into a combined ‘sit/stand’ category and tested against other light activities: 88% of sit/stand and 87% of light activities were accurately predicted. Using Freedson’s moderate cut-point of 1952 count/min-1 the GEE accurately predicted 97% of light vs. 90% of moderate activities. CONCLUSION: The distributions of MTI recorded sitting and standing data overlap considerably, as such the 100 count/min -1 cut-point did not accurately isolate sitting from other static standing activities. The 100 count/min -1 cut-point more accurately predicted sit/stand vs. other movement orientated activities.