850 resultados para 380304 Neurocognitive Patterns and Neural Networks
Resumo:
Post-Fordist economies come along with post-welfarist societies marked by intensified cultural individualism and increased structural inequalities. These conditions are commonly held to be conducive to relative deprivation and, thereby, anomic crime. At the same time, post-welfarist societies develop a new ‘balance of power’ between institutions providing for welfare regulation, such as the family, the state and the (labour) market – and also the penal system. These institutions are generally expected to improve social integration, ensure conformity and thus reduce anomic crime. Combining both perspectives, we analyse the effects of moral individualism, social inequality, and different integration strategies on crime rates in contemporary societies through the lenses of anomie theory. To test our hypotheses, we draw on time-series cross-section data compiled from different data sources (OECD, UN, WHO, WDI) for twenty developed countries in the period 1970-2004, and run multiple regressions that control for country-specific effects. Although we find some evidence that the mismatch between cultural ideal (individual inclusion) and structural reality (stratified exclusion) increases the anomic pressure, whereas conservative (i. e. family-based), social-democratic (i. e. state-based) and liberal (i. e. market-based) integration strategies to a certain extent prove effective in controlling the incidence of crime, the results are not very robust. Moreover, reservations have to be made regarding the effects of “market” income inequality as well as familialist, unionist and liberalist employment policies that are shown to have reversed effects in our sample: the former reducing, the latter occasionally increasing anomic crime. As expected, the mismatch between cultural ideal (individual inclusion) and structural reality (stratified exclusion) increases the anomic pressure, whereas conservative (i. e. family-based), social-democratic (i. e. state-based) and liberal (i. e. market-based) integration strategies generally prove effective in controlling the incidence of crime. Nevertheless, we conclude that the new cult of the individual undermines the effectiveness of conservative and social-democratic integration strategies and drives societies towards more “liberal” regimes that build on incentive as well as punitive elements.
Resumo:
Open collaborative projects are moving to the foreground of knowledge production. Some online user communities develop into longterm projects that generate a highly valuable and at the same time freely accessible output. Traditional copyright law that is organized around the idea of a single creative entity is not well equipped to accommodate the needs of these forms of collaboration. In order to enable a peculiar network-type of interaction participants instead draw on public licensing models that determine the freedoms to use individual contributions. With the help of these access rules the operational logic of the project can be implemented successfully. However, as the case of the Wikipedia GFDL-CC license transition demonstrates, the adaptation of access rules in networks to new circumstances raises collective action problems and suffers from pitfalls caused by the fact that public licensing is grounded in individual copyright. Legal governance of open collaboration projects is a largely unexplored field. The article argues that the license steward of a public license assumes the position of a fiduciary of the knowledge commons generated under the license regime. Ultimately, the governance of decentralized networks translates into a composite of organizational and contractual elements. It is concluded that the production of global knowledge commons relies on rules of transnational private law.
Resumo:
The hypothesis that psychotic experiences in healthy subjects are associated with a dysfunction of the right hemisphere is supported by some, but not all, available studies. Differences in gender composition of study samples may explain in part the divergent findings. The present study was carried out in 42 healthy, right-handed university students. Scores on the Schizophrenia and Paranoia scales of the Minnesota Multidimensional Personality Inventory-2 were used in correlation analyses and to define a High- and a Low-Psychotic group. Brain Electrical Microstates and Low Resolution Electromagnetic Tomography (LORETA) source analyses of the auditory P300 (P3a and P3b) components of the event-related potential, as well as a battery of neuropsychological tests, were used to assess hemispheric functioning. Scores on the Paranoia scale were positively associated with a leftward shift of the P3a topographic descriptors in females but not in males. When comparing High-Psychotic and Low-Psychotic females, a leftward shift of P3a descriptors and an increased cortical activation in left fronto-temporal areas were observed in the High-Psychotic group. Our results demonstrated gender-related differences in the pattern of hemispheric imbalance associated with psychotic experiences in healthy subjects.
Resumo:
OBJECTIVE: There are relevant links between resting-state fMRI networks, EEG microstate classes and psychopathological alterations in mental disorders associated with frontal lobe dysfunction. We hypothesized that a certain microstate class, labeled C and correlated with the salience network, was impaired early in frontotemporal dementia (FTD), and that microstate class D, correlated with the frontoparietal network, was impaired in schizophrenia. METHODS: We measured resting EEG microstate parameters in patients with mild FTD (n = 18), schizophrenia (n = 20), mild Alzheimer's disease (AD; n = 19) and age-matched controls (old n = 19, young n = 18) to investigate neuronal dynamics at the whole-brain level. RESULTS: The duration of class C was significantly shorter in FTD than in controls and AD, and the duration of class D was significantly shorter in schizophrenia than in controls, FTD and AD. Transition analysis showed a reversed sequence of activation of classes C and D in FTD and schizophrenia patients compared with that in controls, with controls preferring transitions from C to D, and patients preferring D to C. CONCLUSION: The duration and sequence of EEG microstates reflect specific aberrations of frontal lobe functions in FTD and schizophrenia. SIGNIFICANCE: This study highlights the importance of subsecond brain dynamics for understanding of psychiatric disorders.
Resumo:
Quantification of the volumes of sediment removed by rock–slope failure and debris flows and identification of their coupling and controls are pertinent to understanding mountain basin sediment yield and landscape evolution. This study captures a multi-decadal period of hillslope erosion and channel change following an extreme rock avalanche in 1961 in the Illgraben, a catchment prone to debris flows in the Swiss Alps. We analyzed photogrammetrically-derived datasets of hillslope and channel erosion and deposition along with climatic and seismic variables for a 43 year period from 1963 to 2005. Based on these analyses we identify and discuss (1) patterns of hillslope production, channel transfer and catchment sediment yield, (2) their dominant interactions with climatic and seismic variables, and (3) the nature of hillslope–channel coupling and implications for sediment yield and landscape evolution in this mountain basin. Our results show an increase in the mean hillslope erosion rate in the 1980s from 0.24 ± 0.01 m yr− 1 to 0.42 ± 0.03 m yr− 1 that coincided with a significant increase in air temperature and decrease in snow cover depth and duration, which we presume led to an increase in the exposure of the slopes to thermal weathering processes. The combination of highly fractured slopes close to the threshold angle for failure, and multiple potential triggering mechanisms, means that it is difficult to identify an individual control on slope failure. On the other hand, the rate of channel change was strongly related to variables influencing runoff. A period of particularly high channel erosion rate of 0.74 ± 0.02 m yr− 1 (1992–1998) coincided with an increase in the frequency and magnitude of intense rainfall events. Hillslope erosion exceeded channel erosion on average, indicative of a downslope-directed coupling relationship between hillslope and channel, and demonstrating the first order control of rock–slope failure on catchment sediment yield and landscape evolution.
Resumo:
The tonotopic organization of the mammalian cochlea is accompanied by structural gradients which include the somatic lengths of outer hair cells (OHCs). These receptors rest upon the vibrating portion of the basilar membrane and have been reported to exhibit motile responses following chemical and electrical stimulation. These movements were examined in detail in this dissertation. It was found that isolated OHCs cultured in vitro respond to chemical depolarization with slow tonic movements, and to electrical waveforms with bi-directional, frequency following movements extending from DC to at least 10 kHz.^ Slow contractions were also elicited following electrical stimulation, bath incubation in carbachol (a cholinergic agonist), and increases in extracellular K+ concentration as little as 50 mM.^ Isolated OHCs display anatomical features which are remarkable when contrasted with those prepared from intact receptor organs. A complex structure located between the cuticular plate and the nuclear membrane was consistently observed and was examined by serial cross-sections which revealed a network of non-membrane bound densities. This corresponded to a granular complex seen at the light microscope level. The complex was composed of dense regions of organelles, striated structures embedded within the core, and a circumferential network of microtubules residing in the peri-nuclear portion of the cell. In cells which had lost their nuclear attachment to the terminal synaptic body, the granular complex could be made to contract without effecting any change in cellular length, implying that the complex may be the driving force behind certain aspects of the motile response.^ Most cells displayed movements which revealed asymmetries analogous to those reported for OHC receptor potentials in vivo. The contraction phase (for longer cells) was shown to have a small time constant (approximately 400 microseconds) and saturated with limited displacements. The expansion phase had time constants as large as 1.3 milliseconds but yielded displacements as much as 60 percent larger than those seen for contractions.^ Additional waveform characteristics seen in the in vivo response could be emulated either by biasing the cell's resting length with either direct current, triggering contractions via large electrical displacements, or incubation with depolarizing compounds.^ Alternatively, short (20-30 um) cells revealed more linear response characteristics to the probe stimulus. Partial saturation was achieved and revealed a DC component which was opposite in polarity to that seen in longer cells. (Abstract shortened with permission of author.) ^
Resumo:
Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100 - 5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the delta(18)O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the arid and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas.
Resumo:
Information Centric Networking (ICN) as an emerging paradigm for the Future Internet has initially been rather focusing on bandwidth savings in wired networks, but there might also be some significant potential to support communication in mobile wireless networks as well as opportunistic network scenarios, where end systems have spontaneous but time-limited contact to exchange data. This chapter addresses the reasoning why ICN has an important role in mobile and opportunistic networks by identifying several challenges in mobile and opportunistic Information-Centric Networks and discussing appropriate solutions for them. In particular, it discusses the issues of receiver and source mobility. Source mobility needs special attention. Solutions based on routing protocol extensions, indirection, and separation of name resolution and data transfer are discussed. Moreover, the chapter presents solutions for problems in opportunistic Information-Centric Networks. Among those are mechanisms for efficient content discovery in neighbour nodes, resume mechanisms to recover from intermittent connectivity disruptions, a novel agent delegation mechanisms to offload content discovery and delivery to mobile agent nodes, and the exploitation of overhearing to populate routing tables of mobile nodes. Some preliminary performance evaluation results of these developed mechanisms are provided.
Resumo:
Mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) have been attracting increasing attention for decades due to their broad civilian and military applications. Basically, a MANET or WSN is a network of nodes connected by wireless communication links. Due to the limited transmission range of the radio, many pairs of nodes in MANETs or WSNs may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such types of networks is an important issue and it poses great challenges due to the dynamic nature of MANETs or WSNs. On the one hand, the open-air nature of wireless environments brings many difficulties when an efficient routing solution is required. The wireless channel is unreliable due to fading and interferences, which makes it impossible to maintain a quality path from a source node to a destination node. Additionally, node mobility aggravates network dynamics, which causes frequent topology changes and brings significant overheads for maintaining and recalculating paths. Furthermore, mobile devices and sensors are usually constrained by battery capacity, computing and communication resources, which impose limitations on the functionalities of routing protocols. On the other hand, the wireless medium possesses inherent unique characteristics, which can be exploited to enhance transmission reliability and routing performance. Opportunistic routing (OR) is one promising technique that takes advantage of the spatial diversity and broadcast nature of the wireless medium to improve packet forwarding reliability in multihop wireless communication. OR combats the unreliable wireless links by involving multiple neighboring nodes (forwarding candidates) to choose packet forwarders. In opportunistic routing, a source node does not require an end-to-end path to transmit packets. The packet forwarding decision is made hop-by-hop in a fully distributed fashion. Motivated by the deficiencies of existing opportunistic routing protocols in dynamic environments such as mobile ad-hoc networks or wireless sensor networks, this thesis proposes a novel context-aware adaptive opportunistic routing scheme. Our proposal selects packet forwarders by simultaneously exploiting multiple types of cross-layer context information of nodes and environments. Our approach significantly outperforms other routing protocols that rely solely on a single metric. The adaptivity feature of our proposal enables network nodes to adjust their behaviors at run-time according to network conditions. To accommodate the strict energy constraints in WSNs, this thesis integrates adaptive duty-cycling mechanism to opportunistic routing for wireless sensor nodes. Our approach dynamically adjusts the sleeping intervals of sensor nodes according to the monitored traffic load and the estimated energy consumption rate. Through the integration of duty cycling of sensor nodes and opportunistic routing, our protocol is able to provide a satisfactory balance between good routing performance and energy efficiency for WSNs.
Resumo:
The aim of this study was to assess patterns and correlates of family variables in 31 adolescents treated for their first episode of a schizophrenia spectrum disorder (early-onset schizophrenia [EOS]). Expressed emotion, perceived criticism, and rearing style were assessed. Potential correlates were patient psychopathology, premorbid adjustment, illness duration, quality of life (QoL), sociodemographic variables, patient and caregiver "illness concept," and caregiver personality traits and support. Families were rated as critical more frequently by patients than raters (55% vs. 13%). Perceived criticism was associated with worse QoL in relationship with parents and peers. An adverse rearing style was associated with a negative illness concept in patients, particularly with less trust in their physician. Future research should examine perceived criticism as a predictor of relapse and indicator of adolescents with EOS who need extended support and treatment. Rearing style should be carefully observed because of its link with patients' illness concept and, potentially, to service engagement and medication adherence
Resumo:
Background: Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catechominergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber’s selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Methods: Using identical neuroimaging procedures with [18F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared to healthy controls in a double-blind, randomized, crossover design. Results: While TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex (PCC). While we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. Conclusions: In conclusion, this study showed that serotonin and catecholamines play common and differential roles in the pathophysiology of depression.