996 resultados para 340-U1396B
Resumo:
本论文由四部分组成,前三部分为实验论文,第四部分为文献综述。第一、二部分分别报道了中药西藏胡黄连和鸡矢藤的化学成分研究结果。从两种药用植物中共分离和鉴定了32个化学成分,其中3个为新化合物。第三部分为黄芪多糖的提取工艺研究。第四部分概述了近年来植物多糖的研究进展。 第一章为西藏胡黄连化学成分研究。通过正、反相硅胶柱层析等分离方法从药用植物西藏胡黄连(Picrorhiza scrophulariiflora Pennell)的根茎中共分离纯化出7个化合物。运用MS、1H-NMR、13C-NMR、DEPT、HSQC和HMBC等现代谱学方法,结合理化分析对这些化合物的结构进行了分析鉴定。7个化合物中有两个是酚性的葡萄糖苷类成分:西藏胡黄连酚苷D (1)、4-O-β-D-(6-O-vanilloyl glucopyranosyl) vanillic acid (6);四个苯乙基苷类化合物:plantamajoside (2)、plantainoside D (3)、西藏胡黄连苷A (4) 和西藏胡黄连苷F (5);一个苯基小分子化合物:香豆酸甲酯 (7)。其中化合物1和5未见文献报道,确定为新化合物;化合物3为首次从该种植物中分到。 第二章为鸡矢藤化学成分研究。从鸡矢藤(Paederia scandense (Lour) Merrill)全草中分离出25个化合物,通过理化常数和波谱数据鉴定了它们的结构。25个化合物中包括一个蒽醌类成分:茜根定-1-甲醚 (1);两个香豆素:异东莨菪香豆素 (2)和5-羟基-8-甲氧基吡喃香豆素 (3);两个香豆素-木脂素化合物:臭矢菜素 B (4)和臭矢菜素 D (5);一个木脂素:异落叶松树脂醇 (6);两个黄酮:diadzein (7)和蒙花苷 (8);三个三萜类化合物:齐墩果酸 (9)、乌苏酸 (10)和 3-O-β-D-吡喃葡萄糖基乌苏烷 (11);三个甾体及其糖苷:b-谷甾醇 (12)、胡萝卜苷 (13)和(24R)-豆甾-4-烯-3-酮 (14);六个小分子化合物:对羟基苯甲酸 (15),咖啡酸 (16),香豆酸 (17),丁烯二酸 (18),3,5-二甲氧基-4-羟基苯甲酸(19),咖啡酸-4-O-β-D-吡喃葡萄糖苷(20);五个环烯醚萜类化合物:鸡矢藤苷 (21),鸡矢藤酸 (22),鸡矢藤酸甲酯 (23),saprosmoside E (24)和paederoside B (25)。其中化合物25未见文献报道,为新化合物。化合物1~8、11、14、15~20为首次从该化合物中分离得到。同时对鸡矢藤中环烯醚萜类化合物做了高效液相-串联质谱(HPLC-MSn)分析,探讨了这类化合物的质谱裂解规律。 第三章为黄芪多糖的提取工艺研究。首先确定了黄芪多糖含量的测定方法,并进行了方法学验证;其次探讨了黄芪中黄芪多糖的提取工艺,确定以酶法-Sevag法联用来去除黄芪多糖中的蛋白质,可使其提取物中黄芪多糖总含量达到70%以上。 第四章为近年来植物多糖的研究进展。主要包括植物多糖的提取纯化、多糖的定性定量检测方法、多糖的结构分析和多糖的药理活性。 This dissertation consists of four parts. The first and second parts reports the studies on the chemical constituents of medicinal plants of Picrorhiza Scrophulariiflora and Paederia scandens. The third part is about the extract technique of Astragalan Polysaccharide (APS). The last part reviews the progress of the studies on plant polysaccharides. The first chapter is about the chemical constituents of P. Scrophulariiflora which is widely used as an important medicine to treat various immune-related diseases. A new phenyl glycoside, scrophenoside D (1) and a new phenylethyl glycoside, scroside F (5), together with five known compounds, plantamajoside (2), plantainoside D (3), scroside A (4), 4-O-β-D-(6-O-vanilloylglucopyranosyl) vanillic acid (6); and methyl-p-coumarate (7) were isolated from the stems of P. scrophulariiflora. Their structures were elucidated by spectroscopic and chemical methods. The second chapter is about the chemical constituents of medicinal herb of P. scandens. Twenty-five compounds were isolated and purified by normal and reversed phase silica gel column chromatography. By physicochemical properties and spectral analysis, their structures were identified as rubiadin-1-methylether (1), isoscopoletin (2), 5-hydroxyl-8-methoxyl-coumarin (3), cleomiscosin B (4), cleomiscosin D (5), isolariciresinol (6), diadzein (7), linarin (8), oleanolic acid (9), ursolic acid (10), 3-O-β-D-glucopyranosyloxyl-ursane (11), b-sitosterol (12), b-daucosterol (13), (24R)-stigmast-4-ene-3-one (14), p-hydroxyl-benzoic acid (15), caffic acid (16), coumaric acid (17), trans-butenedioic acid (18), 3,5-dimethoxyl-4-hydroxylbenzoic acid (19), caffeic acid 4-O-β-D-glucopyranoside (20), paederoside (21), paederosidic acid (22), paederosidic acid methyl ester (23), saprosmoside E (24), paederoside B (25). Among them, compound 25 is a new compound. Compounds 1~8、11、14、15~20 were isolated from this plant for the first time. Futhermore, we studied the HPLC-MSn analysis and investigation of fragmentation behavior of the sulfur-containing iridoid glucosides. The third chapter is about the extracting process of Astragalan Polysaccharide (APS). The method of the content determination is built. The optimum condition of extraction of polysaccharides from Radix Astragali is defined and the more effective way to remove protein is combined enzyme method with Sevag method, by which the content of polysaccharides extract can be up to 70%. The last part is a review of the research progress of the plant polysaccharides, which includes its extraction, isolation, purification, determination, structure analysis, and pharmacology.
Resumo:
近二十多年来,基于对臭氧层衰减、紫外线B(UV-B)增强的担心,研究者希望了解到紫外线辐射对不同作物的影响情况,增强UV-B辐射条件下是否对作物的生长发育、产量质量构成威胁。在本试验中,我们首先探讨了双子叶作物黄瓜(Cucumis sativus)和大豆(Glycine max)对不同紫外波段的生物效应[分别为B-UVA(315-400 nm),N-UVA(315-340 nm),B-UVB(275-400 nm)和N-UVB(290-340 nm),UV-(>400nm)作对照]。我们观察到所有的UV波段处理都使黄瓜和大豆的生长受到抑制,并且细胞受到不同程度的氧化伤害;UV波段处理的作用效果与不同波段的紫外有效生物辐射剂量有关。处理差异在UV-B波段内部和UV-A波段内部同样存在。植物生长UV辐射公式(BSWF)能很好的预测本试验UV-B波段内的平均植物效应,但不能预测UV-A波段的植物效应。短波UV-A的生物作用强于长波UV-A。光合色素的变化与UV波谱差异和种间差异有关。在高的紫外/可见光背景下,UV-A处理同UV-B同样导致光合色素的降低,但黄瓜类胡萝卜素/叶绿素比例升高。与其他研究者的试验结果比较后,我们认为紫外线B辐射的生物效应一致性很高,但紫外线A波段的生物学效应存在较大争议。因此我们在本试验的基础上仅进行荞麦[苦荞(Fagopyrum tataricum Gaertn.)和甜荞(Fagopyrum esculentum Moench.)]对紫外线B波段的响应研究。 我们对苦荞品种-圆籽荞进行了连续两个生长季节的大田半控制试验以观察UV-B辐射对苦荞生长、发育、产量及叶片色素的影响;试验小区进行降低UV-B、近充足UV-B和增强UV-B辐射处理。我们的试验表明在不同强度UV-B辐射下苦荞的生长、地上部生物量积累及最终产量都有所下降,但苦荞的发育加快;当前条件下的日光紫外线B辐射对植物生长和产量也造成负面影响。植物光合色素被日光及增强UV-B辐射降低;UV化合物及卢丁含量在中低剂量的UV-B辐射强度下显著升高,但在高剂量的增强UV-B辐射下短期升高后迅速下降。我们的试验表明苦荞是一个对UV-B高度敏感的作物。苦荞对UV-B的敏感性与UV-B剂量、外界环境因素及生长季节有关。 单个苦荞品种的试验结果使我们认识到外界UV-B辐射已经对苦荞生长发育构成逆境条件,未来全球气候变化条件下增强紫外线B辐射可能使其处于更不利的生长环境中。因此我们有进行了多个种群进行UV-B响应观察并筛选耐性种群。我们对15个苦荞种群进行增强UV-B辐射处理(6.30 kJ m2 UV-BBE,模拟当地25%的臭氧衰减),我们观察苦荞UV-B辐射效应存在显著的种内差异,UV-B辐射对多数种群具有抑制作用,但对一些种群还有刺激作用。我们采用主成分分析方法与作物UV-B响应指数(RI)来评价苦荞作物UV-B辐射耐性。我们发现作物的UV-B耐性不仅与其原产地背景UV-B强度有关,而且与作物相对生长效率、次生代谢产物含量(如卢丁)及其他因素有关。我们观察到苦荞伸展叶总叶绿素变化与UV-B耐性成正相关;室内苦荞幼苗的UV-B辐射致死试验表明:苦荞种群死亡率与其UV-B耐性成负相关。 此外,我们对甜荞的UV-B辐射响应也进行了初步研究。选取美姑甜荞、巧家甜荞和云龙甜荞进行5个梯度的增强UV-B辐射室外模拟试验。我们观察到UV-B辐射显著降低了甜荞的生长、生物量及产量;并严重影响了甜荞的生殖生长,降低了花序数、种子数和结实率;并且UV-B辐射对甜荞的抑制作用存在显著的剂量效应。三种甜荞品种存在显著的种内差异,其中美姑品种UV-B耐性最强,且膜脂受UV-B辐射氧化伤害最小,这与该品种UV-B辐射下较高的GR酶活性、APX酶活性和PPO酶活性、以及含量更高的抗坏血酸有关。甜荞的次生代谢也受到增强UV-B辐射的影响,其香豆酰类化合物在UV-B辐射下升高显著,而槲皮素含量也在高剂量UV-B辐射下有所增加;卢丁含量依赖UV-B辐射剂量而变化,中低剂量UV-B辐射下其卢丁含量逐渐升高,但在高剂量辐射下逐渐下降。 通过对生长在高海拔地区的荞麦作物(苦荞和甜荞)进行的室外研究,我们认识到作物不同品种存在很大的耐性差异,这就为UV-B耐性育种创造了有利条件。进一步加大荞麦种质资源筛选力度并深入认识荞麦抗性机理,在此基础上通过杂交或其他基因融合手段培育抗性品种,对高剂量UV-B辐射地区的荞麦产量的提高将起到重要推动作用,并使荞麦生产能有效应对未来全球气候变化条件下UV-B辐射可能升高的威胁。 During last few decades, due to concern of ozone layer depletion and enhancement of ultraviolet B radiation(UV-B, 280-315 nm), the agronomist want to know the responses of different crop species to UV-B. In the first experiment of our study, the effect of different UV band [B-UVA(315-400 nm), N-UVA(315-340 nm), B-UVB(275-400 nm), N-UVB(290-340 nm)and UV-(>400nm, as control)] on the cucumber(Cucumis sativus)and soybean(Glycine max)were investigated in growth room. Spectra-dependent differences in growth and oxidation indices existed within UV-A bands as well as UV-B bands. The general biological effects of different band were UV- < B-UVA< N-UVA<N-UVB<B-UVB. The plant growth biologically spectra weighting function(BSWF)matched well with average plant response in UV-B region, but not in UV-A region. Shorter UV-A wavelength imposed more negative impact than longer UV-A wavelength did in both species. The effect on photosynthetic pigment was related to different UV bands and different species. The photosynthetic pigment content was decreased by UV-A spectra as well as UV-B spectra. In comparison with the results of previous studies, we found that the wavelength-dependent biological effect of ultraviolet B radiation has high consistency, but the biological effect of ultraviolet-A radiation was inconsistent. We narrow our following study on the effect of ultraviolet B radiation on the buckwheat(tartary buckwheat and common buckwheat). The tartary buckwheat(Fagopyrum tataricum Gaertn.)cultivars Yuanziqiao was grown in the sheltered field plots for two consecutive seasons under reduced, near-ambient and two supplemental levels of UV-B radiation. The crop growth, photosynthetic pigments, total biomass, final seed yield and thousand-grain weight were decreased by near-ambient and enhanced UV-B radiation, while crop development was promoted by enhanced UV-B radiation. Leaf rutin concentration and UV-B absorbing compound was generally increased by UV-B with the exception of 8.50 kJ m-2 day-1 supplemental levels. Our results showed that tartary buckwheat is a potentially UV-B sensitive species. Study on one cultivars showed that ambient solar radiation had present a stress to tartary buckwheat. This makes it necessary to observe the UV-B response of many cultivars and screen tolerant cultivars. Fifteen populations of tartary buckwheat were experienced enhanced UV-B radiation simulating 25% depletion of the stratospheric ozone layer in Kunming region, and plant responses in growth, morphology and productivity were observed. Principal components analysis(PCA)was used to evaluate overall sensitivity of plant response to UV-B as well as response index. The different populations exhibited significant differences in responses to UV-B. The photosynthetic pigments of young seedlings were also affected significantly under field condition. On the other hand, the healthy seedlings of different populations were exposed to the high level of UV-B radiation in growth chambers to determine the plant lethality rate. The plant tolerance evaluated by multivariate analysis was positively related to total plant chlorophyll change, but negatively related to lethality rate. In other hand, the UV-B responses of the other important cultivated buckwheat species, common buckwheat(Fagopyrum esculentum Moench.), were also studied preliminarily. Three widespread cultivated variety(Meigu, Qiaojia and Yunlong cultivars)were provided with five level of enhanced UV-B radiation outdoors. We observed that the crop growth, development and production were significantly decreased, and reproductive production, like anthotaxy number, seed number and seed setting ratio, was also decreased. Dose-dependent inhibition effect caused by enhanced UV-B radiation also existed in common buckwheat. Significant intraspecific difference existed in those three cultivars. The Meigu cultivars with dwarfed growth and lower production have highest UV-B tolerance as well as lowest damage in cell membrane, this could be associated with profound enhancements of glutathione reductase(GR)activity, ascorbate peroxidase activity and polyphenol oxidase activity as well as higher ascorbic acid concentration. The secondary metabolism was also affected by UV-B radiation, with profound elevation of coumarin compound and moderate increase of quercetin concentration. Rutin concentration was peaked in 5kJ m-2 UV-B. The contrasting effect of UV-B radiation on different populations indicated that there existed abundant genetic resources for selecting tolerant populations of common and tartary buckwheat. Much effort needed be pose on screening of buckwheat germplasm and clarification of mechanism of buckwheat tolerance to UV-B. On this base the tolerant cultivars could be bred by hybridization and other gene transfusion method, this would help increase buckwheat yield in high ambient UV-B region and counteract the effect of possible enhanced UV-B radiation in future.