992 resultados para 325-M0044A
Resumo:
利用p53 C端118个氨基酸的mRNA二级结构和Chou-Fasman蛋白质二级结构预测原则,预测p53蛋白质C端289-325为卷曲肽段,368-393段包括两段螺旋结构:#alpha#_(1)368-373、#alpha#_(2)381-388。其中三段已知的蛋白质二级结构与此mRNA二级结构单元间有准确的对应关系。与四种以多重序列联配为基础的蛋白质二级结构预测方法(准确率均为73.20%左右)相对照,预测结果基本一致。结合单体聚合区31个氨基酸晶体结构,在SGI INDIGO~(2)工作站上构建了p53 C端108个残基的三维结构。进一步揭示了p53 C端诸多生物功能区之间的空间构象关系。
Resumo:
菊小长管蚜Macrosiphorniella sanborni是昆明地区花卉主要害虫之一,该虫对菊花嫩叶,嫩梢,花柄及花勒为害率达65.0%,个别大棚高达100,损失产量25.0%。室内外用1.8爱福丁3000,2500,2000倍液敌敌畏1500,1000,800倍液进行毒杀试验,爱福丁室内的毒杀率达96.6%,敌敌畏达96.3%;田间爱福丁害83.39%,敌敌畏达80.20%。
Resumo:
Parallel strand models for base sequences d(A)(10). d(T)(10), d(AT)(5) . d(TA)(5), d(G(5)C(5)). d(C(5)G(5)), d(GC)(5) . d(CG)(5) and d(CTATAGGGAT). d(GATATCCCTA), where reverse Watson-Crick A-T pairing with two H-bonds and reverse Watson-Crick G-C pairing with one H-bond or with two H-bonds were adopted, and three models of d(T)(14). d(A)(14). d(T)(14) triple helix with different strand orientations were built up by molecular architecture and energy minimization. Comparisons of parallel duplex models with their corresponding B-DNA models and comparisons among the three triple helices showed: (i) conformational energies of parallel AT duplex models were a little lower, while for GC duplex models they were about 8% higher than that of their corresponding B-DNA models; (ii) the energy differences between parallel and B-type duplex models and among the three triple helices arose mainly from base stacking energies, especially for GC base pairing; (iii) the parallel duplexes with one H-bond G-C pairs were less stable than those with two H-bonds G-C pairs. The present paper includes a brief discussion about the effect of base stacking and base sequences on DNA conformations. (C) 1997 Academic Press Limited.
Resumo:
It was expected that there are a coil (289 similar to 325) and two a helix (alpha(1)368 similar to 373, alpha(2)381 similar to 388) structures in p53 protein C-terminal region based on its mRNA secondary structure template and Chou-Fasman's protein secondary structure principle of prediction. The result was conformed by the other four methods of protein secondary structure prediction that are based on the multiple sequence alignment (accuracy = 73.20%). Combine with the 31 amino acids crystal structure of the oligomerization, the three dimensional conformation of p53 C-terminal 108 residues was built using the SGI INDIGO(2) computer. This structure further expounds the relationship among those biological function domains of p53 C- terminus at three-dimensional level.