905 resultados para 3-dimensional Solution Structure
Resumo:
Reaction of K-3[Cr(ox)(3)] (ox = oxalate) with nickel(II) and tris(2-aminoethyl)amine (tren) in aqueous solution resulted in isolation of the bimetallic assembly [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O. The polymeric complex {[Ni-2(tren)(3)][ClO4](4). H2O}(n) has been prepared by reaction of nickel(II) perchlorate and tren in aqueous solution. From the same reaction mixture the complex [Ni-2(tren)(2)(aepd)][ClO4](4). 2H(2)O (aepd = N-(2-aminoethyl)pyrrolidine-3,4-diamine), in which a bridging tren ligand contains a carbon-carbon bond between two arms forming a substituted pyrrolidine, has been isolated. The complexes have been characterized by X-ray crystallography. The magnetic susceptibility (300-4.2 K) and magnetization data (2, 4 K, H = 0-5 T) for {[Ni-2(tren)(3)][ClO4](4). H2O}(n) (300 K , 4.23 mu(B)) exhibit evidence of weak antiferromagnetic coupling and zero field splitting (2J = -1.8 cm(-1); \ D\ = 2 cm(-1)) at low temperature. For [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O the susceptibility data at 300 K are indicative of uncoupled nickel(II) and chromium(III) sites with zero-field splitting and intramolecular antiferromagnetic coupling predicted at low temperature.
Resumo:
We have shown that 44 amino acid residues N-terminal segment of kappa-casein exhibits considerable a-helical structure. This prompted us to investigate the structures of the remaining segments of kappa-casein. Thus, in this study the chemical synthesis and structure elucidation of the peptide 45-87 amino acid residues of kappa-casein is reported. The peptide was assembled using solid phase peptide synthesis methodology on pam resin, cleaved via HF, freeze dried and, after purification, characterised by mass spectrometry (observed m/z 4929; calculated mit 4929.83). The amino acid sequence of the peptide is: CKPVALINNQFLPYPYYAKPAAVRSPAQILQWQVLSNTVPAKA Its structure elucidation has been carried out using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. CD spectrum of the peptide shows it to be a random structure in water but in 30% trifluoroethanol the peptide exhibits considerable structure. The 1D and 2D NMR spectra corroborated the results of CD. The structure elucidation of the peptide using TOCSY and NOESY NMR techniques will be discussed.
Resumo:
The fine structure of a directed triple system of index lambda is the vector (c(1), c(2),...,C-lambda), where c(i) is the number of directed triples appearing precisely i times in the system. We determine necessary and sufficient conditions for a vector to be the fine structure of a directed triple system of index 3 for upsilon = 2 (mod 3).
Resumo:
EXAFS spectra of [(HC(Ph2PO)(3))(2)Cu](ClO4)(2). 2H(2)O have been measured at room temperature. These show that the CuO6 unit is tetragonally elongated, rather than having the compressed tetragonal geometry previously inferred from the X-ray crystal structure determination. [GRAPHICS]
Resumo:
We conduct a theoretical analysis to investigate the convective instability of 3-D fluid-saturated geological fault zones when they are heated uniformly from below. In particular, we have derived exact analytical solutions for the critical Rayleigh numbers of different convective flow structures. Using these critical Rayleigh numbers, three interesting convective flow structures have been identified in a geological fault zone system. It has been recognized that the critical Rayleigh numbers of the system have a minimum value only for the fault zone of infinite length, in which the corresponding convective flow structure is a 2-D slender-circle flow. However, if the length of the fault zone is finite, the convective flow in the system must be 3-D. Even if the length of the fault zone is infinite, since the minimum critical Rayleigh number for the 2-D slender-circle flow structure is so close to that for the 3-D convective flow structure, the system may have almost the same chance to pick up the 3-D convective flow structures. Also, because the convection modes are so close for the 3-D convective flow structures, the convective flow may evolve into the 3-D finger-like structures, especially for the case of the fault thickness to height ratio approaching zero. This understanding demonstrates the beautiful aspects of the present analytical solution for the convective instability of 3-D geological fault zones, because the present analytical solution is valid for any value of the ratio of the fault height to thickness. Using the present analytical solution, the conditions, under which different convective flow structures may take place, can be easily determined.
Resumo:
The aim of this work was to exemplify the specific contribution of both two- and three-dimensional (31)) X-ray computed tomography to characterise earthworm burrow systems. To achieve this purpose we used 3D mathematical morphology operators to characterise burrow systems resulting from the activity of an anecic (Aporrectodea noctunia), and an endogeic species (Allolobophora chlorotica), when both species were introduced either separately or together into artificial soil cores. Images of these soil cores were obtained using a medical X-ray tomography scanner. Three-dimensional reconstructions of burrow systems were obtained using a specifically developed segmentation algorithm. To study the differences between burrow systems, a set of classical tools of mathematical morphology (granulometries) were used. So-called granulometries based on different structuring elements clearly separated the different burrow systems. They enabled us to show that burrows made by the anecic species were fatter, longer, more vertical, more continuous but less sinuous than burrows of the endogeic species. The granulometry transform of the soil matrix showed that burrows made by A. nocturna were more evenly distributed than those of A. chlorotica. Although a good discrimination was possible when only one species was introduced into the soil cores, it was not possible to separate burrows of the two species from each other in cases where species were introduced into the same soil core. This limitation, partly due to the insufficient spatial resolution of the medical scanner, precluded the use of the morphological operators to study putative interactions between the two species.
Resumo:
In a decentralized setting the game-theoretical predictions are that only strong blockings are allowed to rupture the structure of a matching. This paper argues that, under indifferences, also weak blockings should be considered when these blockings come from the grand coalition. This solution concept requires stability plus Pareto optimality. A characterization of the set of Pareto-stable matchings for the roommate and the marriage models is provided in terms of individually rational matchings whose blocking pairs, if any, are formed with unmatched agents. These matchings always exist and give an economic intuition on how blocking can be done by non-trading agents, so that the transactions need not be undone as agents reach the set of stable matchings. Some properties of the Pareto-stable matchings shared by the Marriage and Roommate models are obtained.
Resumo:
beta-1,3-1,4-Glucanases (E.C. 3.2.1.73) hydrolyze linked beta-D-glucans, such as lichenan and barley beta-glucan. Recombinant beta-1,3-1,4-glucanase from Bacillus subtilis expressed in Escherichia coil and purified by Ni-NTA chromatography exhibited optimum activity at 50 degrees C and pH 6.0. The catalytic half-life at 60 degrees C decreased from 90 to 5 min when the enzyme was incubated in the presence and absence of Ca(2+) respectively. The kinetic parameters of lichenan hydrolysis were 2695, 3.1 and 1220 for V(max) (mu mol/min/mg), K(m) (mg mL(-1)) and K(cat) (s(-1)), respectively. Analysis by DLS, AUC and SAXS demonstrated the enzyme is monomeric in solution. Chemical denaturation monitored by ITFE and far-UV CD yielded Delta G(H2O) values of 9.6 and 9.1 kcal/mol, respectively, showing that the enzyme has intermediate stability when compared with other Bacillus beta-1,3-1,4-glucanases. The crystal structure shows the anti-parallel jelly-roll beta-sheet conserved in all GH16 beta-1,3-1,4-glucanases, with the amino acid differences between Bacillus sp. enzymes that are likely determinants of stability being distributed throughout the protein. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.
Resumo:
The title compound, C(8)H(14)N(2)O(5)S 2(H(2)O), 2-amino-3-(N-oxipiridin-4-ilsulfanil)-propionic acid dihydrate, is obtained by the reaction of cysteine and 4-nitropyridine N-oxide in dimethylformamide, removing the NO(2) group from the benzene ring and releasing nitrous acid into the solution. The molecule exists as a Zwitterion. Hydrogen bond interactions involving the title molecule and water molecules allow the formation of R(5)(5)(23) edge fused rings parallel to (010). Water molecules are connected independently, forming infinite chains (wires), in square wave form, along the b-axis. The chirality of the cysteine molecule used in the synthesis is retained in the title molecule. A density functional theory (DFT) optimized structure at the B3LYP/6-311G(3df,2p) level allows comparison of calculated and experimental IR spectra.
Resumo:
Glucocorticoids are an important cause of secondary osteoporosis in humans, which decreases bone quality and leads to fractures. Mechanical stimulation in the form of low-intensity and high-frequency vibration seems to be able to prevent bone loss and to stimulate bone formation. The objective of this study was to evaluate the effects of mechanical vibration on bone structure in rats treated with glucocorticoids. Thirty 3-month-old adult male Wistar rats were randomized to three groups: control (C), glucocorticoid (G), and glucocorticoid with vibration (CV). The G and GV groups received 3.5 mg/kg/day of methylprednisolone 5 days/week for a duration of 9 weeks, and the C group received vehicle (saline solution) during the same period. The CV group was vibrated on a special platform for 30 min per day, 5 days per week during the experiment. The platform was set to provide a vertical acceleration of 1 G and a frequency of 60 Hz. Skeletal bone mass was evaluated by total body densitometry (DXA). Fracture load threshold, undecalcified bone histomorphometry, and bone volume were measured in tibias. Glucocorticoids induced a significantly lower weight gain (-9.7%) and reduced the bone mineral content (-9.2%) and trabecular number (-41.8%) and increased the trabecular spacing (+98.0%) in the G group, when compared to the control (C). Vibration (CV) was able to significantly preserve (29.2%) of the trabecular number and decrease the trabecular spacing (+ 26.6%) compared to the G group, although these parameters did not reach C group values. The fracture load threshold was not different between groups, but vibration significantly augmented the bone volume of the tibia by 21.4% in the CV group compared to the C group. Our study demonstrated that low-intensity and high-frequency mechanical vibration was able to partially inhibit the deleterious consequences of glucocorticoids on bone structure in rats. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The pocilloporin Rtms5 and an engineered variant Rtms5(H146S) undergo distinct color transitions (from blue to red to yellow to colorless) in a pH-dependent manner. pK(a) values of 4.1 and 3.2 were determined for the blue (absorption lambda(max), 590 nm) to yellow (absorption lambda(max), similar to 453 nm) transitions of Rtms5 and Rtms5H(146). The pK(a) for the blue-yellow transition of Rtms5H(146S) increased by 1.4 U in the presence of 0.1 M KI, whereas the pK(a) for the same transition of Rtms5 was relatively insensitive to added halides. To understand the structural basis for these observations, we have determined to 2.0 A resolution the crystal structure of a yellow form of Rtms5(H146S) at pH 3.5 in the presence of iodide. Iodide was found occupying a pocket in the structure with a pH of 3.5, forming van der Waals contacts with the tyrosyl moiety of the chromophore. Elsewhere, it was determined that this pocket is occupied by a water molecule in the Rtms5(H141S) structure (pH 8.0) and by the side chain of histidine 146 in the wild-type Rtms5 structure. Collectively, our data provide an explanation for the observed linkage between color transitions for Rtms5(H146S) and binding to halides.
Resumo:
The synthesis, spectroscopy, and electrochemistry of the acyclic tertiary tetraamine copper(II) complex [CuL(1)](ClO4)(2) (L(1) = N,N-bis(2'-(dimethylamino)ethyl)-N,N'-dimethylpropane-1,3-diamine) is reported. The X-ray crystal structure of [CuL(1)(OClO3)(2)] reveals a tetragonally elongated CuN4O2 coordination sphere, exhibiting relatively long Cu-N bond lengths for a Cu-II tetraamine, and a small tetrahedral distortion of the CuN4 plane. The [CuL(1)](2+) ion displays a single, reversible, one-electron reduction at -0.06 V vs Ag/AgCl. The results presented herein illustrate the inherent difficulties associated with the separation and characterization of Cu-II complexes of tertiary tetraamines, and some previously incorrect assertions and unexplained observations of other workers are discussed.