969 resultados para 3-Methyl-2-benzothiazoline hydrazone
Resumo:
1. The metabolic disposition of R-(+)-pulegone (1) was examined in rats following four daily oral doses (250 mg/kg). 2. Six metabolites, namely pulegol (II), 2-hydroxy-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanone (III), 3,6-dimethyl-7a-hydroxy-5,6,7,7a-tetrahydro-2(4H)-benzofuranone (IV), menthofuran (V), 5-methyl-2-(1-methyl-1-carboxyethylidene)cyclohexanone (VI), and 5-methyl-5-hydroxy-2-(1-hydroxy-1-carboxyethyl)cyclohexanone (VII) have previously been isolated from rat urine, and identified (Moorthy et al. (1989a). Eight new metabolites have now been isolated from rat urine, namely, 5-hydroxy-pulegone (VIII), piperitone (IX), piperitenone (X), 7-hydroxy-piperitone (XI), 8-hydroxy piperitone (XII), p-cresol (XIII), geranic acid (XIV) and neronic acid (XV). These were identified by n.m.r., i.r. and mass spectrometry. 3. Based on these results, metabolic pathways for the biotransformation of R-(+)-pulegone in rat have been proposed.
Resumo:
The title complex has been prepared from a reaction of [Ru2O(O22CMe)2 (MeCN)4(PPH3)2](ClO4)2 with N,N-dimethyl-1,2-diaminoethane (dmen) in MeOH. The crystal structure of [Ru2O(O2CMe)2(dmen)2(PPh3)2](ClO4)2.MeOH shows the presence of a [Ru2(mu-O)(mu-O2CMe)2]2+ core. The terminal ligands on each metal are a PPh3 and a bidentate chelating dmen. The Ru-Ru distance and Ru-O-Ru angle in the core are 3.271(2) angstrom and 120.9(4)-degrees. The more electron-donating site of the dmen ligand is bonded at the terminal sites trans to the mu-oxo ligand. The complex displays a visible absorption band at 566 nm (epsilon, 6960 M-1 cm-1) in MeCN and undergoes a nearly reversible one-electron oxidation at 1.02 V and an irreversible reduction at -0.52 V (vs SCE) in MeCN-0.1 M [NBu4n](ClO4).
Resumo:
The title compound, 9,10-dihydro-8,8-dimethyl-2-oxo-2H,8H-benzo[1,2-b:3,4-b']dipyran-9,10-diyl 2-methyl-2-butenoate, C24H26O7, contains a highly planar coumarin nucleus and a substituted dihydropyran ring (C), which has a distorted half-chair conformation, with an 8 alpha,9 beta orientation. The conformation of ring C is further supported by the two angelyloxy (2-methyl-2-butenoyloxy) substituents at positions C9 and C10, which are cis oriented and thus cannot both occupy equatorial positions with respect to the plane of ring C. The conformations of the two angelyloxy substituents are different, as indicated by their endocyclic torsion angles. The most striking of these angles are O1'-C2'-C4'=C6' and O1'-C2'-C4'-C5' [-137.7 (5) and 43.7 (5)degrees, respectively, in the chain at C10 and 155.8 (5) and -24.7 (9)degrees, respectively in the chain at C9]. These variations are due to two intramolecular hydrogen bonds, namely, C16-H161 ... O1' [C16 ... O1' 3.056 (7) Angstrom] and C7''-H7Y ... O3'' [C7'' ... O3'' 2.955 (12) Angstrom]. The methyl substituents, C15 and C16, at position C8 are alpha and beta oriented, respectively. The crystal structure is stabilized by a weak C4-H41 ... O3' hydrogen bond [C4 ... O3' 3.297 (6) Angstrom] between the screw-related molecules.
Resumo:
Unsymmetrical diphosphazanes Ph(2)PN(Pr-i)PYY' [YY' = O2C12H8 (L(1)), O2C20H12 (L(2)); Y = Ph and Y' = OC6H4Br-4 (L(3)), OC(6)H(4)Me-4 (L(4)), OC(6)H(3)Me(2)-3,5 (L(5)), N(2)C(3)HMe(2)-3,5 (L(6))] react with cis-[PdCl2(COD)] (COD = cycloocta-1,5-diene) giving the chelate complexes of the type cis-[PdCl2{eta(2)-Ph(2)PN(Pr-i)PYY'}] [YY' = O2C12H8 (1), O2C20H12 (2), Y = Ph and Y' = OC6H4Br-4 (3), OC(6)H(4)Me-4 (4), OC(6)H(3)Me(2)-3,5 (5), N(2)C(3)HMe(2)-3,5 (6)]. The P-N bond in 3 and 5 undergoes a facile cleavage in methanol solution to give cis-[PdCl2{eta(1)Ph(2)P(OMe)}{eta(1)-PhP(NHPri)(Y')}] [Y' = OC6H4Br-4 (7), OC(6)H(3)Me(2)-3,5 (8)]. Reactions of Pd-2(dba)(3) . CHCl3 (dba = dibenzylideneacetone) with the diphosphazanes Ph(2)PN(Pr-i)PPhY' [Y' = OC(6)H(4)Me-4 (L(4)), N(2)C(3)HMe(2)-3,5 (L(6)), N2C3H3 (L(7))] in the presence of MeI yields cis-[PdI2{eta(2)-Ph(2)PN(Pr-i)PPhMe}] (9); the P-O or P-N(pyrazolyl) bond of the starting ligands is cleaved and a p-C(Me) bond is formed. An analogous oxidative addition reaction in the presence of Ph(2)PN(Pr-i)PPh(2) (L(8)) yields cis-[PdI(Me)(eta(2)-L(8))] (10) and cis-[PdI2(eta 2-L(8))] (11). The structures of 8 and 9 have been determined by X-ray diffraction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
6, 8-Dichloro-4, 5-dihydro-2-methyl-[2, 7]acenaphthyridin-1-one (5), obtained from the. reaction of 5-cyano-2, 6-dihydroxy-3, 4-cyclopentenopyridine with Vilsmeier reagent, has been transformed to the key synthon 4a in two steps.
Resumo:
Oxidative addition of tetrachloro-ortho-benzoquinone to lambda(3)-cyclotriphosphazanes, [EtNP(OR)](3) results in an unprecedented ring contraction-rearrangement to give diazadiphosphetidines (EtN)(2)[P(OR)(O2C6Cl4)] [P(O2C6Cl4)-[N(Et)P(OR)(2)}] (R = C6H4Br-4 or C(6)H(3)Me(2)-2,6), a process indicated to be thermodynamically favourable on the basis of PM3 calculations.
Resumo:
The Norrish type II processes of methyl-2,2-dimethyl- cyclopropyl ketone, alpha-alkoxy acetones and alkyl pyruvates have been examined using the AM1 semi-empirical molecular orbital method with complete geometry optimization at the partial configuration interaction level in the restricted Hartree-Fock (RHF) frame. The results reveal that the methyl-substituted cyclopropyl ketone has a constrained geometry favourable for hydrogen abstraction from the gamma-position relative to the carbonyl group in the excited singlet state. The presence of the ether oxygen atom in the beta-position relative to the carbonyl group in alkoxy acetones and alkyl pyruvates leads to increased reactivity relative to alkyl monoketones and diketones respectively. The cyclization of 1:4 biradicals has been studied in the unrestricted Hartree-Fock (UHF) frame, and the results reveal that the 1:4 biradical derived from alkoxy acetones readily cyclizes to form oxetanols. On the other hand, in the 1:4 biradicals derived from methyl-substituted cyclopropyl ketone, the three-membered ring breaks readily to form an enol intermediate. Delocalization of an odd electron in 1:4 biradicals derived from alkyl pyruvates is thought to make cyclization difficult.
Resumo:
Fluorescent zinc complexes have recently attracted a lot of interest owing to their vast applications in cellular imaging. We report the synthesis as well as physical, chemical and biological studies of a novel zinc glyoxalbis(4-methyl-4-phenyl-3-thiosemicarbazone), Zn (GTSC)](3), complex. As compared with the well-studied zinc biacetylbis(4-methyl-3-thiosemicarbazone), Zn(ATSM), complex, which was used as a reference, Zn(GTSC)](3) had 2.5-fold higher fluorescence. When cellular fluorescence was measured using flow cytometry, we observed that Zn(GTSC)](3) had 3.4-fold to 12-fold higher fluorescence than Zn(ATSM) in various cell lines (n = 9) of different tissue origin. Confocal fluorescence microscopy results showed that Zn(GTSC)](3) appeared to have a nuclear localization within 30 mm of addition to MCF7 cells. Moreover, Zn(GTSC)](3) showed minimal cytotoxicity compared with Zn(ATSM), suggesting that Zn(GTSC)](3) may be less deleterious to cells when used as an imaging agent. Our data suggest that the novel Zn(GTSC)](3) complex can potentially serve as a biocompatible fluorescent imaging agent for live cells.
Resumo:
Reaction of SbPh(2)Cl(3) (1 mol) with the silver salt of dicyclohexylphosphinic acid (2 mol) afforded {SbPh(2)Cl[O2P(C6H11)(2)]}O-2 1, a similar reaction with AgO2P(C8H15)(2) gave a product formulated as {SbPh(2)Cl[O2P(C8H15)(2)]}O-2 2. Similar reactions with silver carboxylates (1:3 stoichiometry) led to the crystalline derivatives [SbPh(2)(O(2)CR)(2)]O-2 (R = Ph 3, CHPh(2) 4, 2,4,6-Me(3)C(6)H(2) 5, 2-MeC(6)H(4) 6 or 4-MeC(6)H(4) 7), whereas the 1:2 reaction afforded crystalline SbPh(2)Cl(O(2)CR)(2) (R = Ph 8, 2-MeC(6)H(4) 9 or 4-MeC(6)H(4) 10). Interconversion of the previously known compounds [SbPh(2)(O(2)CMe)(2)]O and Sb(4)Ph(8)O(6) . 3MeCO(2)H was achieved and established by H-1 NMR spectroscopy. Compounds 1 and 3 were further characterized by X-ray diffraction; the antimony in 1 is six-co-ordinated with bridging phosphinates whereas in 3 it is seven-co-ordinated with chelating benzoates. Short Sb-O (oxo) distances (1.923 Angstrom) and near linearity at the bridging ox
Resumo:
GC-MS study of two fatty oil fractions from Artabotrys odoratissimus (leaves) indicated the presence of fifteen compounds namely, nonanoic acid; methyl phenyl propanoate; decanoic acid; diethyl phthalate; dibutyl phthalate; 2 - amino-3-ethyl biphenyl; 5-methyl-9-phenylnonan-3-ol; hexadeca-2,7,11-triene; 2,6-dimethyl-1-phenylhepta-1-one; 2,5-dimethyltetradecahydrophenenthrene; 1-phenylundecane; 1-isopropyl-4,6-dimethyl naphthalene; 5-(2-butyl phenyl)pent-3-en-2-ol; 1-phenyideca-1-one and 1-phenylundecan-1-one. Some of the compounds are rare occurring and biologically active.
Resumo:
Copper(l) complexes of 1,2-bis(diphenylphosphino)ethane (dppe) with a stoichiometry Cu-2(dppe)(3)(X)(2) [X- = CN- (1), SCN- (2), NO3- (3)] are obtained from direct reactions of CuX and dppe. The complexes are structurally and spectroscopically (NMR and IR) characterized. The structure of the [Cu-2(dPPe)(3)](2+) dication is similar to the structural motif observed in many other complexes with a chelating dppe and a bridging dppe connecting two copper centers. In complexes 1 -3, the anions are confined to the cavity formed by the phosphines which force a monodentate coordination mode despite the predominant bidentate/bridging character of the anions. The coordination angles rather than the thermochemical radii dictate the steric requirement of anions. While the solution behavior of 3, with nitrate, is similar to complexes studied earlier, complexes with pseudohalides exhibit new solution behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An open-framework zinc phosphate, [C6N4H22][Zn6(PO4)4(HPO4)2] (I), with alternating inorganic and organic layers has been synthesized hydrothermally from a starting mixture of ZnO, HCl, H3PO4, H2C2O4, and triethylenetetramine. Single-crystal data for I: monoclinic, space GROUP =P21/c (No. 14), a=9.881(1), b=16.857(1), c=8.286(1) Å, β=96.7(1)°, V=1370.8(1) Å3, Z=2, R1=0.06, and wR2=0.13 [1408 observed reflections with I>2σ(I)]. The structure of I comprises a network of ZnO4, PO4, and PO3(OH) tetrahedra forming one-dimensional tubes. The tubes, in turn, are linked via oxygen atoms forming macroanionic inorganic layers with eight-membered apertures. The one-dimensional tube-like architecture in I is a novel feature worthy of note.
Resumo:
The synthesis, structure and magnetic properties of mixed-metal oxides of ABO(3) composition in the La-B-V-O (B = Ni, Cu) systems are described in the present paper. While the B = Ni oxides adopt GdFeO3-like perovskite structure containing disordered nickel and vanadium at the octahedral B site, La3Cu2VO9 crystallizes in a YAlO3-type structure. A detailed investigation of the superstructure of nominal La3Cu2VO9 by WDS analysis and Rietveld refinement of powder XRD data reveal that the likely composition of the phase is La13Cu9V4O38.5, where the Cu and V atoms are ordered in a root13a(h) (a(h) = hexagonal a parameter of YAlO3-like subcell) superstructure. Magnetic susceptibility data support the proposed superstructure consisting of triangular Cu-3 clusters. At low temperatures, the magnetic moment corresponds to S = 1/2 per Cu-3 cluster, while at high temperatures the behavior is Curie-Weiss like, showing S = 1/2 per copper. The present work reveals the contrasting behavior of La-Cu-V-O and La-Ni-V-O systems: while a unique line-phase related to YAlO3 structure is formed around La3Cu2VO9 Composition in the copper system, a continuous series of perovskite-GdFeO3 solid solutions, LaNi1-xVxO3 for 0 less than or equal to x less than or equal to 1/3 seems to be obtained in the nickel system, where the oxidation state of nickel varies from 3+ to 2+.
Resumo:
The single-crystal X-ray structure of a cation-templated manganese-oxalate coordination polymer [NH(C2H5)(3)][Mn-2(ox)(3)]center dot(5H(2)O)] (1) is reported. In 1, triethylammonium cation is entrapped between the cavities of 2-D honeycomb layers constructed by oxalate and water. The acyclic tetrameric water clusters and discrete water assemble the parallel 2-D honeycomb oxalate layers via an intricate array of hydrogen bonds into an overall 3-D network. The magnetic susceptibility, with and without the water cluster, are reported with infrared and EPR studies.
Resumo:
We report the synthesis of a novel class of low band gap copolymers based on anacenaphtho[1,2-b]quinoxaline core and oligothiophene derivatives acting as the acceptor and the donor moieties, respectively. The optical properties of the copolymers were characterized by ultraviolet-visible spectroscopy while the electrochemical properties were determined by cyclic voltammetry. The band gap of these polymers was found to be in the range 1.8-2.0 eV as calculated from the optical absorption band edge. X-ray diffraction measurements show weak pi-pi stacking interactions between the polymer chains. The hole mobility of the copolymers was evaluated using field-effect transistor measurements yielding values in the range 10(-5)-10(-3) cm(2)/Vs.