826 resultados para 2D barcode based authentication scheme
Resumo:
Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.
Resumo:
Additive Manufacturing (AM) is nowadays considered an important alternative to traditional manufacturing processes. AM technology shows several advantages in literature as design flexibility, and its use increases in automotive, aerospace and biomedical applications. As a systematic literature review suggests, AM is sometimes coupled with voxelization, mainly for representation and simulation purposes. Voxelization can be defined as a volumetric representation technique based on the model’s discretization with hexahedral elements, as occurs with pixels in the 2D image. Voxels are used to simplify geometric representation, store intricated details of the interior and speed-up geometric and algebraic manipulation. Compared to boundary representation used in common CAD software, voxel’s inherent advantages are magnified in specific applications such as lattice or topologically structures for visualization or simulation purposes. Those structures can only be manufactured with AM employment due to their complex topology. After an accurate review of the existent literature, this project aims to exploit the potential of the voxelization algorithm to develop optimized Design for Additive Manufacturing (DfAM) tools. The final aim is to manipulate and support mechanical simulations of lightweight and optimized structures that should be ready to be manufactured with AM with particular attention to automotive applications. A voxel-based methodology is developed for efficient structural simulation of lattice structures. Moreover, thanks to an optimized smoothing algorithm specific for voxel-based geometries, a topological optimized and voxelized structure can be transformed into a surface triangulated mesh file ready for the AM process. Moreover, a modified panel code is developed for simple CFD simulations using the voxels as a discretization unit to understand the fluid-dynamics performances of industrial components for preliminary aerodynamic performance evaluation. The developed design tools and methodologies perfectly fit the automotive industry’s needs to accelerate and increase the efficiency of the design workflow from the conceptual idea to the final product.
Resumo:
This PhD project focuses on the study of the early stages of bone biomineralization in 2D and 3D cultures of osteoblast-like SaOS-2 osteosarcoma cells, exposed to an osteogenic cocktail. The efficacy of osteogenic treatment was assessed on 2D cell cultures after 7 days. A large calcium minerals production, an overexpression of osteogenic markers and of alkaline phosphatase activity occurred in treated samples. TEM microscopy and cryo-XANES micro-spectroscopy were performed for localizing and characterizing Ca-depositions. These techniques revealed a different localization and chemical composition of Ca-minerals over time and after treatment. Nevertheless, the Mito stress test showed in treated samples a significant increase in maximal respiration levels associated to an upregulation of mitochondrial biogenesis indicative of an ongoing differentiation process. The 3D cell cultures were realized using two different hydrogels: a commercial collagen type I and a mixture of agarose and lactose-modified chitosan (CTL). Both biomaterials showed good biocompatibility with SaOS-2 cells. The gene expression analysis of SaOS-2 cells on collagen scaffolds indicated an osteogenic commitment after treatment. and Alizarin red staining highlighted the presence of Ca-spots in the differentiated samples. In addition, the intracellular magnesium quantification, and the X-ray microscopy on mineral depositions, suggested the incorporation of Mg during the early stages of bone formation process., SaOS-2 cells treated with osteogenic cocktail produced Ca mineral deposits also on CTL/agarose scaffolds, as confirmed by alizarin red staining. Further studies are underway to evaluate the differentiation also at the genetic level. Thanks to the combination of conventional laboratory methods and synchrotron-based techniques, it has been demonstrated that SaOS-2 is a suitable model for the study of biomineralization in vitro. These results have contributed to a deeper knowledge of biomineralization process in osteosarcoma cells and could provide new evidences about a therapeutic strategy acting on the reversibility of tumorigenicity by osteogenic induction.
Resumo:
The presented study aimed to evaluate the productive and physiological behavior of a 2D multileader apple training systems in the Italian environment both investigating the possibility to increase yield and precision crop load management resolution. Another objective was to find valuable thinning thresholds guaranteeing high yields and matching fruit market requirements. The thesis consists in three studies carried out in a Pink Lady®- Rosy Glow apple orchard trained as a planar multileader training system (double guyot). Fruiting leaders (uprights) dimension, crop load, fruit quality, flower and physiological (leaf gas exchanges and fruit growth rate) data were collected and analysed. The obtained results found that uprights present dependence among each other and as well as a mutual support during fruit development. However, individual upright fruit load and upright’s fruit load distribution on the tree (~ plant crop load) seems to define both upright independence from the other, and single upright crop load effects on the final fruit quality production. Correlations between fruit load and harvest fruit size were found and thanks to that valuable thinning thresholds, based on different vegetative parameters, were obtained. Moreover, it comes out that an upright’s fruit load random distribution presents a widening of those thinning thresholds, keeping un-altered fruit quality. For this reason, uprights resulted a partially physiologically-dependent plant unit. Therefore, if considered and managed as independent, then no major problems on final fruit quality and production occurred. This partly confirmed the possibility to shift crop load management to single upright. The finding of the presented studies together with the benefits coming from multileader planar training systems suggest a high potentiality of the 2D multileader training systems to increase apple production sustainability and profitability for Italian apple orchard, while easing the advent of automation in fruit production.
Resumo:
Over the last decade, graphene and related materials (GRM) have drawn significant interest and resources for their development into the next generation of composite materials. This is because these nanoparticles have the ability to operate as reinforcing additives capable of imparting considerable mechanical property increases while also embedding multi-functional advantages on the host matrix. Because graphene and 2D materials are still in their early stages, the relative maturity of different types of composite systems varies. As a result, certain nanocomposite systems are currently commercially accessible, while others are not yet sufficiently developed to enter the market. A substantial emphasis has been placed on developing thermoplastic and thermosetting materials that combine a variety of mechanical and functional qualities. These include higher strength and stiffness, increased thermal and electrical conductivity, improved barrier properties, fire retardancy, and others, with the ultimate goal of providing multifunctionality to already employed composites. The work presented in this thesis investigates the use and benefits that GRM could bring to composites for a variety of applications, with the goal of realizing multifunctional components with improved properties that leads to lightweight and, as a result, energy and cost savings and pollution reduction in the environment. In particular, we worked on the following topics: • Benchmarking of commercial GRM-based master batches; • GRM-coatings for water uptake reduction; • GRM as thermo-electrical anti-icing /de-icing system; • GRM for Out of Oven curing of composites.
Resumo:
The study of the atmospheric chemical composition is crucial to understand the climate changes that we are experiencing in the last decades and to monitor the air quality over industrialized areas. The Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) ground-based instruments are particularly suitable to derive the concentration of some trace gases that absorb the Visible (VIS) and Ultra-Violet (UV) solar radiation. The zenith-sky spectra acquired by the Gas Analyzer Spectrometer Correlating Optical Differences / New Generation 4 (GASCOD/NG4) instrument are exploited to retrieve the NO2 and O3 total Vertical Column Densities (VCDs) over Lecce. The results show that the NO2 total VCDs are significantly affected by the tropospheric content, consequence of the anthropogenic activity. Indeed, they present systematically lower values during Sunday, when less traffic is generally present around the measurement site, and during windy days, especially when the wind direction measured at 2 m height is not from the city of Lecce. Another MAX-DOAS instrument (SkySpec-2D) is exploited to create the first Italian MAX-DOAS site compliant to the Fiducial Reference Measurements for DOAS (FRM4DOAS) standards, in San Pietro Capofiume (SPC), located in the middle of the Po Valley. After the assessment of the SkySpec-2D’s performances through two measurement campaigns taken place in Bologna and in Rome, SkySpec-2D is installed in SPC on the 1st October 2021. Its MAX-DOAS spectra are used to retrieve the NO2 and O3 total VCDs, and aerosol extinction and NO2 tropospheric vertical profiles over the Po Valley exploiting the Bremen Optimal estimation REtrieval for Aerosol and trace gaseS (BOREAS) algorithm. Promising results are found, with high correlations against both in-situ and satellite data. In the future, these data will play an important role for air quality studies over the Po Valley and for satellite validation purposes.
Development of processes for the valorization of lignocellulosic biomass based on renewable energies
Resumo:
The world grapples with climate change from fossil fuel reliance, prompting Europe to pivot to renewable energy. Among renewables, biomass is a bioenergy and bio-carbon source, used to create high-value biomolecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, hold promise as bio-additives and biofuels, especially via acid solvolysis of hexose sugars, necessitating further exploration. Alkyl levulinate's potential extends to converting into γ-valerolactone (GVL), a bio-solvent produced via hydrogenation with molecular-hydrogen. Hydrogen, a key reagent and energy carrier, aids renewable energy integration. This thesis delves into a biorefinery system study, aligning with sustainability goals, integrating biomass valorization, energy production, and hydrogen generation. It investigates optimizing technologies for butyl levulinate production and subsequent GVL hydrogenation. Sustainability remains pivotal, reflecting the global shift towards renewable and carbon bio-resources. The research initially focuses on experimenting with the optimal technology for producing butyl levulinate from biomass-derived hexose fructose. It examines the solvolysis process, investigating optimal conditions, kinetic modeling, and the impact of solvents on fructose conversion. The subsequent part concentrates on the technological aspect of hydrogenating butyl levulinate into GVL. It includes conceptual design, simulation, and optimization of the fructose-to-GVL process scheme based on process intensification. In the final part, the study applies the process to a real case study in Normandy, France, adapting it to local biomass availability and wind energy. It defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. Sustainability assessment using economic, environmental, and social indicators culminates in an overall sustainability index, indicating scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising due to high profitability and reduced environmental impact. Sensitivity analyses validate the methodology's reliability, potentially extending to other technological systems.
Resumo:
Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and complement terrestrial systems. In a massiveMTC scenario over NTN, characterized by sporadic uplink data reports, all the terminals within a satellite beam shall be served during the short visibility window of the flying platform, thus generating congestion due to simultaneous access attempts of IoT devices on the same radio resource. The more terminals collide, the more average-time it takes to complete an access which is due to the decreased number of successful attempts caused by Back-off commands of legacy methods. A possible countermeasure is represented by Non-Orthogonal Multiple Access scheme, which requires the knowledge of the number of superimposed NPRACH preambles. This work addresses this problem by proposing a Neural Network (NN) algorithm to cope with the uncoordinated random access performed by a prodigious number of Narrowband-IoT devices. Our proposed method classifies the number of colliding users, and for each estimates the Time of Arrival (ToA). The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in sub-urban environments with two different satellite configurations, shows significant benefits of the proposed NN algorithm with respect to traditional methods for the ToA estimation.
Resumo:
Among the various ways of adopting the biographical approach, we used the curriculum vitaes (CVs) of Brazilian researchers who work as social scientists in health as our research material. These CVs are part of the Lattes Platform of CNPq - the National Council for Scientific and Technological Development, which includes Research and Institutional Directories. We analyzed 238 CVs for this study. The CVs contain, among other things, the following information: professional qualifications, activities and projects, academic production, participation in panels for the evaluation of theses and dissertations, research centers and laboratories and a summarized autobiography. In this work there is a brief review of the importance of autobiography for the social sciences, emphasizing the CV as a form of autobiographical practice. We highlight some results, such as it being a group consisting predominantly of women, graduates in social sciences, anthropology, sociology or political science, with postgraduate degrees. The highest concentration of social scientists is located in Brazil's southern and southeastern regions. In some institutions the main activities of social scientists are as teachers and researchers with great thematic diversity in research.
Resumo:
Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.
Resumo:
A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
32
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
The new social panorama resulting from aging of the Brazilian population is leading to significant transformations within healthcare. Through the cluster analysis strategy, it was sought to describe the specific care demands of the elderly population, using frailty components. Cross-sectional study based on reviewing medical records, conducted in the geriatric outpatient clinic, Hospital de Clínicas, Universidade Estadual de Campinas (Unicamp). Ninety-eight elderly users of this clinic were evaluated using cluster analysis and instruments for assessing their overall geriatric status and frailty characteristics. The variables that most strongly influenced the formation of clusters were age, functional capacities, cognitive capacity, presence of comorbidities and number of medications used. Three main groups of elderly people could be identified: one with good cognitive and functional performance but with high prevalence of comorbidities (mean age 77.9 years, cognitive impairment in 28.6% and mean of 7.4 comorbidities); a second with more advanced age, greater cognitive impairment and greater dependence (mean age 88.5 years old, cognitive impairment in 84.6% and mean of 7.1 comorbidities); and a third younger group with poor cognitive performance and greater number of comorbidities but functionally independent (mean age 78.5 years old, cognitive impairment in 89.6% and mean of 7.4 comorbidities). These data characterize the profile of this population and can be used as the basis for developing efficient strategies aimed at diminishing functional dependence, poor self-rated health and impaired quality of life.