945 resultados para 291802 Heat and Mass Transfer Operations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV+ patients often develop alterations of the plasma lipids that may implicate in development of premature coronary artery disease. High-density lipoprotein (HDL) has an important role in preventing atherogenesis and the aim of this study was to investigate aspects of HDL function in HIV+ patients. HIV+ patients (n = 48) and healthy control subjects (n = 45) of both sexes with similar age were studied. Twenty-five were not being treated with antiretroviral agents, 13 were under reverse transcriptase inhibitor nucleosidic and non-nucleosidic (NRTI+NNRTI) and 10 were under NRTI + protease inhibitors (NRTI+PI) treatment. Paraoxonase 1 (PON1) activity and the transfer of free and esterified cholesterol, tryglicerides and phospholipids from a lipidic nanoemulsion to HDL were analyzed. In comparison with healthy controls, HIV+ patients presented low PON-1 activity and diminished transfer of free cholesterol and tryglicerides. In contrast, phospholipid transfer was increased in those patients, whereas the transfer of cholesteryl esters was unchanged. NRTI+NNRTI increases the transfer of cholesteryl esters and triglycerides but in NRTI+PI there was no difference in respect to non-treated HIV+ patients. HDL from HIV+ patients has smaller antioxidant properties, as shown by lower PON-1 activity, and the transfer of lipids to this lipoprotein fraction is also altered, suggesting that HDL function is defective in those patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of a set of gases relevant within the context of biomolecules and technologically relevant molecules under the interaction of low-energy electrons was studied in an effort to contribute to the understanding of the underlying processes yielding negative ion formation. The results are relevant within the context of damage to living material exposed to energetic radiation, to the role of dopants in the ion-molecule chemistry processes, to Electron Beam Induced Deposition (EBID) and Ion Beam Induced Deposition (IBID) techniques. The research described in this thesis addresses dissociative electron attachment (DEA) and electron transfer studies involving experimental setups from the University of Innsbruck, Austria and Universidade Nova de Lisboa, Portugal, respectively. This thesis presents DEA studies, obtained by a double focusing mass spectrometer, of dimethyl disulphide (C2H6S2), two isomers, enflurane and isoflurane (C3F5Cl5) and two chlorinated ethanes, pentachloroethane (C2HCl5) and hexachloroethane (C2Cl6), along with quantum chemical calculations providing information on the molecular orbitals as well as thermochemical thresholds of anion formation for enflurane, isoflurane, pentachloroethane and hexachloroethane. The experiments represent the most accurate DEA studies to these molecules, with significant differences from previous work reported in the literature. As far as electron transfer studies are concerned, negative ion formation in collisions of neutral potassium atoms with N1 and N3 methylated pyrimidine molecules were obtained by time-of-flight mass spectrometry (TOF). The results obtained allowed to propose concerted mechanisms for site and bond selective excision of bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate fouling tests were carried out using kaolin-water suspensions flowing through an annular heat exchanger with a copper inner tube. The flow rate was changed from test to test, but the fluid temperature and pH, as well as the particle concentration, were maintained constant. In the lower range of fluid velocities (<0.5 m/s), the deposition process seemed to be controlled by mass transfer. The corresponding experimental transport fluxes were compared to the predictions obtained with several models, showing that diffusion governed particle transport. The absolute values of the mass transfer fluxes and their dependences on the Reynolds number were satisfactorily predicted by some of the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2(fl/fl)::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2(fl/fl)::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca(2+) increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2(fl/fl)::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY When exposed to heat stress, plants display a particular set of cellular and molecular responses, such as chaperones expression, which are highly conserved in all organisms. In chapter 1, I studied the ability of heat shock genes to become transiently and abundantly induced under various temperature regimes. To this aim, I designed a highly sensitive heat-shock dependent conditional gene expression system in the moss Physcomitrella patens, using the soybean heatinducible promoter (hsp17.3B). Heat-induced expression of various reporter genes was over three orders of magnitude, in tight correlation with the intensity and duration of the heat treatments. By performing repeated heating/cooling cycles, a massive accumulation of recombinant proteins was obtained. Interestingly, the hsp17.3B promoter was also activated by specific organic chemicals. Thus, in chapter 2, I took advantage of the extreme sensitivity of this promoter to small temperature variations to further address the role of various natural and organic chemicals and develop a plant based-bioassay that can serve as an early warning indicator of toxicity by pollutants and heavy metals. A screen of several organic pollutants from textile and paper industry showed that chlorophenols as well as sulfonated anthraquinones elicited a heat shock like response at noninducing temperatures. Their effects were synergistically amplified by mild elevated temperatures. In contrast to standard methods of pollutant detection, this plant-based biosensor allowed to monitor early stress-responses, in correlation with long-term toxic effect, and to attribute effective toxicity thresholds for pollutants, in a context of varying environmental cues. In chapter 3, I deepened the study of the primary mechanism by which plants sense mild temperature variations and trigger a cellular signal leading to the heat shock response. In addition to the above described heat-inducible reporter line, I generated a P. patens transgenic line to measure, in vivo, variations of cytosolic calcium during heat treatment, and another line to monitor the role of protein unfolding in heat-shock sensing and signalling. The heat shock signalling pathway was found to be triggered by the plasma membrane, where temperature up shift specifically induced the transient opening of a putative high afimity calcium channel. The calcium influx triggered a signalling cascade leading to the activation of the heat shock genes, independently on the presence of misfolded proteins in the cytoplasm. These results strongly suggest that changes in the fluidity of the plasma membrane are the primary trigger of the heatshocksignalling pathway in plants. The present thesis contributes to the understanding of the basic mechanism by which plants perceive and respond to heat and chemical stresses. This may contribute to developing appropriate better strategies to enhance plant productivity under the increasingly stressful environment of global warming. RÉSUME Les plantes exposées à des températures élevées déclenchent rapidement des réponses cellulaires qui conduisent à l'induction de gènes codant pour les heat shock proteins (HSPs). En fonction de la durée d'exposition et de la vitesse à laquelle la température augmente, les HSPs sont fortement et transitoirement induites. Dans le premier chapitre, cette caractéristique aété utilisée pour développer un système inductible d'expression de gènes dans la mousse Physcomitrella patens. En utilisant plusieurs gènes rapporteurs, j'ai montré que le promoteur du gène hsp17.3B du Soja est activé d'une manière. homogène dans tous les tissus de la mousse proportionnellement à l'intensité du heat shock physiologique appliqué. Un très fort taux de protéines recombinantes peut ainsi être produit en réalisant plusieurs cycles induction/recovery. De plus, ce promoteur peut également être activé par des composés organiques, tels que les composés anti-inflammatoires, ce qui constitue une bonne alternative à l'induction par la chaleur. Les HSPs sont induites pour remédier aux dommages cellulaires qui surviennent. Étant donné que le promoteur hsp17.3B est très sensible à des petites augmentations de température ainsi qu'à des composés chimiques, j'ai utilisé les lignées développées dans le chapitre 1 pour identifier des polluants qui déclenchent une réaction de défense impliquant les HSPs. Après un criblage de plusieurs composés, les chlorophénols et les antraquinones sulfonés ont été identifiés comme étant activateurs du promoteur de stress. La détection de leurs effets a été réalisée seulement après quelques heures d'exposition et corrèle parfaitement avec les effets toxiques détectés après de longues périodes d'exposition. Les produits identifiés montrent aussi un effet synergique avec la température, ce qui fait du biosensor développé dans ce chapitre un bon outil pour révéler les effets réels des polluants dans un environnement où les stress chimiques sont combinés aux stress abiotiques. Le troisième chapitre est consacré à l'étude des mécanismes précoces qui permettent aux plantes de percevoir la chaleur et ainsi de déclencher une cascade de signalisation spécifique qui aboutit à l'induction des gènes HSPs. J'ai généré deux nouvelles lignées afin de mesurer en temps réel les changements de concentrations du calcium cytosolique ainsi que l'état de dénaturation des protéines au cours du heat shock. Quand la fluidité de la membrane augmente après élévation de la température, elle semble induire l'ouverture d'un canal qui permet de faire entrer le calcium dans les cellules. Ce dernier initie une cascade de signalisation qui finit par activer la transcription des gènes HSPs indépendamment de la dénaturation de protéines cytoplasmiques. Les résultats présentés dans ce chapitre montrent que la perception de la chaleur se fait essentiellement au niveau de la membrane plasmique qui joue un rôle majeur dans la régulation des gènes HSPs. L'élucidation des mécanismes par lesquels les plantes perçoivent les signaux environnementaux est d'une grande utilité pour le développement de nouvelles stratégies afin d'améliorer la productivité des plantes soumises à des conditions extrêmes. La présente thèse contribue à décortiquer la voie de signalisation impliquée dans la réponse à la chaleur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New high-precision U/Pb geochronology from volcanic ashes shows that the Triassic-Jurassic boundary and end-Triassic biological crisis from two independent marine stratigraphic sections correlate with the onset of terrestrial flood volcanism in the Central Atlantic Magmatic Province to <150 ka. This narrows the correlation between volcanism and mass extinction by an order of magnitude for any such catastrophe in Earth history. We also show that a concomitant drop and rise in sea level and negative delta C-13 spike in the very latest Triassic occurred locally in <290 ka. Such rapid sea-level fluctuations on a global scale require that global cooling and glaciation were closely associated with the end-Triassic extinction and potentially driven by Central Atlantic Magmatic Province volcanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work discusses the effects of university culture and structure on university-business relations, focusing on knowledge transfer activities. It puts forward the thesis that when links between university and business are introduced into the university system as a turn-key proposition rather than as developmental process, the prevailing university culture and structure will exert resistance against change and will oppose the creation of appropriate structures to promote them, with deleterious effects for the university.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical mass transfer was quantified in a metacarbonate xenolith enclosed within the granodiorite of the Qu,rigut massif (Pyrenees, France). Mass balance calculations suggest a strong decrease of CaO, SrO and CO(2) contents (up to -90%), correlated with a decrease of modal calcite content as the contact is approached. Most other chemical elements behave immobile during metasomatism. They are therefore passively enriched. Only a small increase of SiO(2), Al(2)O(3) and Fe(2)O(3) contents occurs in the immediate vicinity of the contact. Hence, in this study, skarn formation is characterized by the lack of large chemical element influx from the granitoid protolith. A large decrease of the initial carbonate volume (up to -86%) resulted from a combination of decarbonation reactions and loss of CaO and CO(2). The resulting volume change has potentially important consequences for the interpretation of stable isotope profiles: the isotope alteration could have occured over greater distances than those observed today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In islet transplantation, nonimmunological factors such as limited growth capacity or increased death rate could reduce the beta cell mass in the graft and lead to failure of the transplant. We studied the evolution of beta cell replication and mass after transplantation of insufficient, minimally sufficient, or excessive islet tissue. Streptozocin diabetic C57BL/6 mice received 150 or 300 syngeneic islets under the kidney capsule and normal mice received 300 islets. In streptozocin diabetic mice 300 islets restored normoglycemia; beta cell replication in transplanted islets was similar to replication in normal pancreas and beta cell mass in the graft remained constant. In contrast, 150 islets were insufficient to achieve normoglycemia; beta cell replication was increased initially but not by 18 or 30 d despite persistent hyperglycemia, and beta cell mass fell progressively. When islets were transplanted into normal recipients, beta cell replication remained normal but beta cells underwent atrophy and mass in the graft was substantially reduced. Therefore, with a successful islet transplant, in diabetic mice beta cell replication and mass remain constant. In contrast, when insufficient islet tissue is transplanted an initial increase in beta cell replication can not compensate for a decline in beta cell mass. When excessive islet tissue is transplanted, beta cell mass is reduced despite normal beta cell replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We combined structural analysis, thermobarometry and oxygen isotope geochemistry to constrain the evolution of kyanite and/or andalusite-bearing quartz veins from the amphibolite facies metapelites of the Simano nappe, in the Central Alps of Switzerland. The Simano nappe records a complex polyphase tectonic evolution associated with nappe stacking during Tertiary Alpine collision (D1). The second regional deformation phase (132) is responsible for the main penetrative schistosity and mineral lineation, and formed during top-to-the-north thrusting. During the next stage of deformation (D3) the aluminosilicate-bearing veins formed by crystallization in tension gashes, in tectonic shadows of boudins, as well as along shear bands associated with top-to-the-north shearing. D2 and D3 are coeval with the Early Miocene metamorphic peak, characterised by kyanite + staurolite + garnet + biotite assemblages in metapelites. The peak pressure (P) and temperature (T) conditions recorded are constrained by multiple-equilibrium thermobarometry at 630 +/- 20 degrees C and 8.5 +/- 1 kbar (similar to 27 km depth), which is in agreement with oxygen isotope thermometry indicating isotopic equilibration of quartz-kyanite pairs at 670 +/- 50 degrees C. Quartz-kyanite pairs from the aluminosilicate-bearing quartz veins yield equilibration temperatures of 645 +/- 20 degrees C, confirming that the veins formed under conditions near metamorphic peak. Quartz and kyanite from veins and the surrounding metapelites have comparable isotopic compositions. Local intergranular diffusion in the border of the veins controls the mass-transfer and the growth of the product assemblage, inducing local mobilization of SiO2 and Al2O3. Andalusite is absent from the host rocks, but it is common in quartz veins, where it often pseudomorphs kyanite. For andalusite to be stable at T-max, the pressure in the veins must have been substantially lower than lithostatic. An alternative explanation consistent with structural observations would be inheritance by andalusite of the kyanite isotopic signature during polymorphic transformation after the metamorphic peak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New precise zircon U-Pb ages are proposed for the Triassic-Jurassic (Rhetian-Hettangian) and the Hettangian-Sinemurian boundaries, The ages were obtained by ID-TIMS dating of single chemical-abraded zircons from volcanic ash layers within the Pucara Group, Aramachay Formation in the Utcubamba valley, northern Peru. Ash layers situated between last and first occurrences of boundary-defining ammonites yielded Pb-206/U-238 ages of 201.58 +/- 0.17/0.28 Ma (95% c.l., uncertainties without/with decay constant errors, respectively) for the Triassic-Jurassic and of 199.53 +/- 0.19/0.29 Ma for the Hettangian-Sinemurian boundaries. The former is established on a tuff located 1 m above the last local occurrence of the topmost Triassic genus Choristoceras, and 5 m below the Hettangian genus Psiloceras. The latter sample was obtained from a tuff collected within the Badouxia canadensis beds. Our new ages document total duration of the Hettagian of no more than c. 2 m.y., which has fundamental implications for the interpretation and significance of the ammonite recovery after the topmost Triassic extinction. The U-Pb age is about 0.8 +/- 0.5% older than Ar-40-Ar-39 dates determined on flood basalts of the Central Atlantic Magmatic Province (CAMP). Given the widely accepted hypothesis that inaccuracies in the K-40 decay constants or physical constants create a similar bias between the two dating methods, our new U-Pb zircon age determination for the T/J boundary corroborates the hypothesis that the CAMP was emplaced at the same time and may be responsible for a major climatic turnover and mass extinction. The zircon Pb-206/U-238 age for the T/J boundary is marginally older than the North Mountain Basalt (Newark Supergroup, Nova Scotia, Canada), which has been dated at 201.27 +/- 0.06 Ma [Schoene et al., 2006. Geochim. Cosmochim. Acta 70, 426-445]. It will be important to look for older eruptions of the CAMP and date them precisely by U-Pb techniques while addressing all sources of systematic uncertainty to further test the hypothesis of volcanic induced climate change leading to extinction. Such high-precision, high-accuracy data will be instrumental for constraining the contemporaneity of geological events at a 100 kyr level. (C) 2007 Elsevier B.V. All rights reserved.