997 resultados para 13368-008
Resumo:
Sustainable development depends on maintaining ecosystem services which are concentrated in coastal marine and estuarine ecosystems. Analyses of the science needed to manage human uses of ecosystem services have concentrated on terrestrial ecosystems. Our focus is on the provision of multidisciplinary data needed to inform adaptive, ecosystem-based approaches (EBAs) for maintaining coastal ecosystem services based on comparative ecosystem analyses. Key indicators of pressures on coastal ecosystems, ecosystem states and the impacts of changes in states on services are identified for monitoring and analysis at a global coastal network of sentinel sites nested in the ocean-climate observing system. Biodiversity is targeted as the “master” indicator because of its importance to a broad spectrum of services. Ultimately, successful implementation of EBAs will depend on establishing integrated, holistic approaches to ocean governance that oversee the development of integrated, operational ocean observing systems based on the data and information requirements specified by a broad spectrum of stakeholders for sustainable development. Sustained engagement of such a spectrum of stakeholders on a global scale is not feasible. The global coastal network will need to be customized locally and regionally based on priorities established by stakeholders in their respective regions. The E.U. Marine Strategy Framework Directive and the U.S. Recommendations of the Interagency Ocean Policy Task Force are important examples of emerging regional scale approaches. The effectiveness of these policies will depend on the co-evolution of ocean policy and the observing system under the auspices of integrated ocean governance.
Resumo:
Western rock lobsters, Panulirus cygnus are an abundant benthic consumer distributed along the temperate west coast of Australia and constitute the largest single species fishery in Australia. As a dominant consumer, it is important to understand their predator-prey interactions as they can potentially exert strong trophic effects, and may influence ecosystem function as seen in other spiny lobster species. While previous field studies have focused on the diet composition of P. cygnus, this study investigated their preference for various benthic invertebrate prey to better understand the likely predator-prey interactions of P. cygnus. Prey preferences of small sub-legal juvenile lobsters, as well as medium and large legal-sized mature lobsters were investigated using laboratory feeding trials to identify size-associated differences in lobster prey preference. Handling time and diet quality were investigated to estimate energetic cost and gain from consuming different prey which may explain prey choice by lobsters. It was found that large lobsters preferred crabs and mussels while medium and small lobsters preferred crabs over mussels, gastropods, and sea urchins. This suggests that strong predator-prey interactions between P. cygnus and crabs may occur in the wild.
Resumo:
A mesocosm experiment was conducted to quantify the relationships between the presence and body size of two burrowing heart urchins (Brissopsis lyrifera and Echinocardium cordatum) and rates of sediment nutrient flux. Furthermore, the impact of seawater acidification on these relationships was determined during this 40-day exposure experiment. Using carbon dioxide (CO2) gas, seawater was acidified to pHNBS 7.6, 7.2 or 6.8. Control treatments were maintained in natural seawater (pH8.0). Under normocapnic conditions, burrowing urchins were seen to reduce the sediment uptake of nitrite or nitrate whilst enhancing the release of silicate and phosphate. In acidified (hypercapnic) treatments, the biological control of biogeochemical cycles by urchins was significantly affected, probably through the combined impacts of high CO2 on nitrifying bacteria, benthic algae and urchin behaviour. This study highlights the importance of considering biological interactions when predicting the consequences of seawater acidification on ecosystem function.
Resumo:
Satellite altimetry has revolutionized our understanding of ocean dynamics thanks to frequent sampling and global coverage. Nevertheless, coastal data have been flagged as unreliable due to land and calm water interference in the altimeter and radiometer footprint and uncertainty in the modelling of high-frequency tidal and atmospheric forcing. Our study addresses the first issue, i.e. altimeter footprint contamination, via retracking, presenting ALES, the Adaptive Leading Edge Subwaveform retracker. ALES is potentially applicable to all the pulse-limited altimetry missions and its aim is to retrack both open ocean and coastal data with the same accuracy using just one algorithm. ALES selects part of each returned echo and models it with a classic ”open ocean” Brown functional form, by means of least square estimation whose convergence is found through the Nelder-Mead nonlinear optimization technique. By avoiding echoes from bright targets along the trailing edge, it is capable of retrieving more coastal waveforms than the standard processing. By adapting the width of the estimation window according to the significant wave height, it aims at maintaining the accuracy of the standard processing in both the open ocean and the coastal strip. This innovative retracker is validated against tide gauges in the Adriatic Sea and in the Greater Agulhas System for three different missions: Envisat, Jason-1 and Jason-2. Considerations of noise and biases provide a further verification of the strategy. The results show that ALES is able to provide more reliable 20-Hz data for all three missions in areas where even 1-Hz averages are flagged as unreliable in standard products. Application of the ALES retracker led to roughly a half of the analysed tracks showing a marked improvement in correlation with the tide gauge records, with the rms difference being reduced by a factor of 1.5 for Jason-1 and Jason-2 and over 4 for Envisat in the Adriatic Sea (at the closest point to the tide gauge).
Resumo:
The European Slope Current (SC) is a major section of the warm poleward flow from the Atlantic to the Arctic, which also moderates the exchange of heat, salt, nutrients and carbon between the deep ocean and the European shelf seas. The mean structure of the geostrophic flow, seasonality, interannual variability and long-term trend of SC are appraised with an unprecedented continuous 20-year satellite altimeter dataset. Comparisons with long term in situ data showed a maximum correlation of r2=0.51 between altimeter and Acoustic Doppler Current Profilers (ADCP), with similar results for drogued buoy data. Mean geostrophic currents were appraised more comprehensively than previous attempts, and the paths of 4 branches of the North Atlantic Current (NAC) and positions of 5 eddies in the region were derived quantitatively. A consistent seasonal cycle in the flow of the SC was found at all 8 sections along the European shelf slope, with maximum poleward flow in the winter and minimum in the summer. The seasonal difference in the altimetry current speed amounted to ~8-10 cm s-1 at the northern sections, but only ~5 cm s-1 on the Bay of Biscay slopes. This extended altimeter dataset indicates significant regional and seasonal variations, and has revealed new insights into the interannual variability of the SC. It is shown that there is a peak poleward flow at most positions along a ~2000 km stretch of the continental slope from Portugal to Scotland during 1995-1997, but this did not clearly relate to the extreme negative North Atlantic Oscillation (NAO) in the winter of 1995-1996. The speed of the SC exhibited a long term decreasing trend of ~1% per year. By contrast the NAC showed no significant trend over the 20-year period. Major changes in the NAC occurred three times, and these changes followed decreases in the NAO index.
Resumo:
Phytoplankton total chlorophyll concentration (TCHLa) and phytoplankton size structure are two important ecological indicators in biological oceanography. Using high performance liquid chromatography (HPLC) pigment data, collected from surface waters along the Atlantic Meridional Transect (AMT), we examine temporal changes in TCHLa and phytoplankton size class (PSC: micro-, nano- and pico-phytoplankton) between 2003 and 2010 (September to November cruises only), in three ecological provinces of the Atlantic Ocean. The HPLC data indicate no significant change in TCHLa in northern and equatorial provinces, and an increase in the southern province. These changes were not significantly different to changes in TCHLa derived using satellite ocean-colour data over the same study period. Despite no change in AMT TCHLa in northern and equatorial provinces, significant differences in PSC were observed, related to changes in key diagnostic pigments (fucoxanthin, peridinin, 19′-hexanoyloxyfucoxanthin and zeaxanthin), with an increase in small cells (nano- and pico-phytoplankton) and a decrease in larger cells (micro-phytoplankton). When fitting a three-component model of phytoplankton size structure — designed to quantify the relationship between PSC and TCHLa to each AMT cruise, model parameters varied over the study period. Changes in the relationship between PSC and TCHLa have wide implications in ecology and marine biogeochemistry, and provide key information for the development and use of empirical ocean-colour algorithms. Results illustrate the importance of maintaining a time-series of in-situ observations in remote regions of the ocean, such as that acquired in the AMT programme.
Resumo:
There is an increasing demand for environmental assessments of the marine environment to include ecosystem function. However, existing schemes are predominantly based on taxonomic (i.e. structural) measures of biodiversity. Biodiversity and Ecosystem Function (BEF) relationships are suggested to provide a mechanism for converting taxonomic information into surrogates of ecosystem function. This review assesses the evidence for marine BEF relationships and their potential to be used in practical monitoring applications (i.e. operationalized). Five key requirements were identified for the practical application of BEF relationships: (1) a complete understanding of strength, direction and prevalence of marine BEF relationships, (2) an understanding of which biological components are influential within specific BEF relationships, (3) the biodiversity of the selected biological components can be measured easily, (4) the ecological mechanisms that are the most important for generating marine BEF relationships, i.e. identity effects or complementarity, are known and (5) the proportion of the overall functional variance is explained by biodiversity, and hence BEF relationships, has been established. Numerous positive and some negative BEF relationships were found within the literature, although many reproduced poorly the natural species richness, trophic structures or multiple functions of real ecosystems (requirement 1). Null relationships were also reported. The consistency of the positive and negative relationships was often low that compromised the ability to generalize BEF relationships and confident application of BEF within marine monitoring. Equally, some biological components and functions have received little or no investigation. Expert judgement was used to attribute biological components using spatial extent, presence and functional rate criteria (requirement 2). This approach highlighted the main biological components contributing the most to specific ecosystem functions, and that many of the particularly influential components were found to have received the least amount of research attention. The need for biodiversity to be measureable (requirement 3) is possible for most biological components although difficult within the functionally important microbes. Identity effects underpinned most marine BEF relationships (requirement 4). As such, processes that translated structural biodiversity measures into functional diversity were found to generate better BEF relationships. The analysis of the contribution made by biodiversity, over abiotic influences, to the total expression of a particular ecosystem function was rarely measured or considered (requirement 5). Hence it is not possible to determine the overall importance of BEF relationships within the total ecosystem functioning observed. In the few studies where abiotic factors had been considered, it was clear that these modified BEF relationships and have their own direct influence on functional rate. Based on the five requirements, the information required for immediate ‘operationalization’ of BEF relationships within marine functional monitoring is lacking. However, the concept of BEF inclusion within practical monitoring applications, supported by ecological modelling, shows promise for providing surrogate indicators of functioning.
Resumo:
Hyperadrenocorticism is a rare endocrine disease in the cat; it is characterized by elevated blood cortisol level that generates numerous clinical signs including hyperglycemia, polyuria, polydipsia, polyphagia and skin diseases. The average age of onset is around 10 years. This disease usually occurs link with other endocrine disorders such as diabetes mellitus.The disease can be produced by functional alteration of the pituitary gland or the adrenal. A case report, with differential diagnosis and review of the literature, is presented.
Resumo:
The majority of randomized clinical trials (RCTs) of spinal manipulative therapy have not adequately de?ned the terms ‘mobilization’ and ‘manipulation’, nor distinguished between these terms in reporting the trial interventions. The purpose of this study was to describe the spinal manipulative therapy techniques utilized within a RCT of manipulative therapy (MT; n=80), interferential therapy (IFT; n=80), and a combination of both (CT; n=80) for people with acute low back pain (LBP). Spinal manipulative therapy was de?ned as any ‘mobilization’ (low velocity manual force without a thrust) or ‘manipulation’ (high velocity
thrust) techniques of the spine described by Maitland and Cyriax.
The 16 physiotherapists, all members of the Society of Orthopaedic Medicine, utilized three spinal manipulative therapy patterns in the RCT: Maitland Mobilization (40.4%, n=59), Maitland Mobilization/Cyriax Manipulation (40.4%, n=59) and Cyriax Manipulation (19.1%, n=28). There was a signi?cant difference between the MT and CT groups in their usage of spinal manipulative therapy techniques (w2=9.178; df=2;P=0.01); subjects randomized to the CT group received three times more Cyriax Manipulation (29.2%, n=21/72) than those randomized to the MT group (9.5%, n=7/74; df=1; P=0.003).
The use of mobilization techniques within the trial was comparable with their usage by the general population of physiotherapists in Britain and Ireland for LBP management. However, the usage of manipulation techniques was considerably higher than reported in physiotherapy surveys and may re?ect the postgraduate training of trial therapists.