999 resultados para 1103


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is now well established that energetic electron emission, nonsequential ionization, and high harmonic generation, produced during the interaction of intense, femtosecond laser pulses with atoms (and atomic positive ions), can be explained by invoking rescattering of the active electron in the laser field, the so-called rescattering mechanism. In contrast for negative ions, the role of rescattering has not been established experimentally. By irradiating F- ions with ultrashort laser pulses, F+ ion yields as a function of intensity for both linearly and circularly polarized light have been measured. We find that, at intensities well below saturation for F+ production by sequential ionization, there is a small but significant enhancement in the yield for the case of linearly polarized light, providing the first clear experimental evidence for the existence of the rescattering mechanism in negative ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CO oxidation on TiO2 supported Au has been studied using density functional theory calculations. Important catalytic roles of the oxide have been identified: (i) CO oxidation occurs at the interface between Au and the oxide with a very small barrier; and (ii) O-2 adsorption at the interface is the key step in the reaction. The physical origin of the oxide promotion effect has been further investigated: The oxide enhances electron transfer from the Au to the antibonding states of O-2, giving rise to (i) strong ionic bonding between the adsorbed O-2, Au, and the Ti cation; and (ii) a significant activation of O-2 towards CO oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on an accurate first principles description of the energetics in H-bonded potassium-dihydrogen-phosphate crystals, we conduct a first study of nuclear quantum effects and of the changes brought about by deuteration. Tunneling is allowed only for clusters involving correlated protons and heavy ion displacements, the main effect of deuteration being a depletion of the proton probability density at the O-H-O bridge center, which in turn weakens its proton-mediated covalent bonding. The ensuing lattice expansion couples self-consistently with the proton off-centering, thus explaining both the giant isotope effect and its close connection with geometrical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of extensive first-principles calculations we studied the ferroelectric phase transition and the associated isotope effect in KH2PO4 (KDP). Our calculations revealed that the spontaneous polarization of the ferroelectric phase is due to electronic charge redistributions and ionic displacements which are a consequence of proton ordering, and not vice versa. The experimentally observed double-peaked proton distribution in the paraelectric phase cannot be explained by a dynamics of only protons. This requires, instead, collective displacements within clusters that include also the heavier ions. These tunneling clusters can explain the recent evidence of tunneling obtained from Compton scattering measurements. The sole effect of mass change upon deuteration is not sufficient to explain the huge isotope effect. Instead, we find that structural modifications deeply connected with the chemistry of the H bonds produce a feedback effect on tunneling that strongly enhances the phenomenon. The resulting influence of the geometric changes on the isotope effect agrees with experimental data from neutron scattering. Calculations under pressure allowed us to analyze the issue of universality in the disappearance of ferroelectricity upon compression. Compressing DKDP so that the distance between the two peaks in the deuteron distribution is the same as for protons in KDP, corresponds to a modification of the underlying double-well potential, which becomes 23 meV shallower. This energy difference is what is required to modify the O-O distance in such a way as to have the same distribution for protons and deuterons. At the high pressures required experimentally, the above feedback mechanism is crucial to explain the magnitude of the geometrical effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and experimental values to date for the resistances of single molecules commonly disagree by orders of magnitude. By reformulating the transport problem using boundary conditions suitable for correlated many-electron systems, we approach electron transport across molecules from a new standpoint. Application of our correlated formalism to benzene-dithiol gives current-voltage characteristics close to experimental observations. The method can solve the open system quantum many-body problem accurately, treats spin exactly, and is valid beyond the linear response regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis on the conductance of multiwall carbon nanotubes (MWNT's) is presented. Recent experiment indicated that MWNT's are good quantum conductors. Our theory shows that tunneling current between states on different walls of a defect-free, infinitely long MWNT is vanishingly small in general, which leads to the quantization of the conductance of the MWNT's. With a reasonable simple model, we explicitly show that the conductance of a capped MWNT can be determined by the outermost wall for an infinitely long nanotube. We apply the theory to finite MWNT's and estimate the generic interwall conductance to be negligible compared to the intrawall ballistic conductance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single-particle states to the many-body current-carrying state is more important than energy minimization for defining single-particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We implement a parallel, time-dependent hybrid finite-difference Lagrange mesh code to model the electron dynamics of the fixed-nuclei hydrogen molecular ion subjected to intense ultrashort laser Pulses, Ionization rates are calculated and compared with results from a previous finite-difference approach and also with published Floquet results. The sensitivity of the results to the gauge describing the electron-field interaction is studied. Visualizations of the evolving wave packets are also presented in which the formation of a stable bound-state resonance is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the response in time of N2, O2, and F2 to laser pulses having a wavelength of 390 nm. We find single-ionization suppression in O2 and its absence in F2, in accordance with experimental results at lambda= 800 nm. Within our framework of time-dependent density functional theory we are able to explain deviations from the predictions of intense-field many-body S-matrix theory (IMST). We confirm the connection of ionization suppression with destructive interference of outgoing electron waves from the ionized electron orbital. However, the prediction of ionization suppression, justified within the IMST approach through the symmetry of the highest occupied molecular orbital (HOMO), is not reliable since it turns out that—e.g., in the case of F2—the electronic response to the laser pulse is rather complicated and does not lead to dominant depletion of the HOMO. Therefore, the symmetry of the HOMO is not sufficient to predict ionization suppression. However, at least for F2, the symmetry of the dominantly ionized orbital is consistent with the nonsuppression of ionization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient method for calculating the electronic structure of systems that need a very fine sampling of the Brillouin zone is presented. The method is based on the variational optimization of a single (i.e., common to all points in the Brillouin zone) basis set for the expansion of the electronic orbitals. Considerations from k.p-approximation theory help to understand the efficiency of the method. The accuracy and the convergence properties of the method as a function of the optimal basis set size are analyzed for a test calculation on a 16-atom Na supercell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ab initio nonlocal pseudopotential variational quantum Monte Carlo techniques are used to compute the correlation effects on the valence momentum density and Compton profile of silicon. Our results for this case are in excellent agreement with the Lam-Platzman correction computed within the local density approximation. Within the approximations used, we rule out valence electron correlations as the dominant source of discrepancies between calculated and measured Compton profiles of silicon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an ab initio pseudopotential calculation, we compute Compton profiles of silicon along the (100), (110), and (111) directions, and then reconstruct the pseudo-wave-functions to regain the oscillatory behavior of the all-electron valence wave functions near the atomic cores. We study the effect that this reconstruction has on the Compton profiles and their anisotropies. We find a decrease in the magnitude of the profiles at small wave vectors and in their anisotropies. These changes bring the theoretical predictions closer to experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the influence of tube-tube interactions in ropes of (10,10) carbon nanotubes, and find that these effects induce a pseudogap in the density of state (DOS) of the rope of width 0.1 eV at the Fermi level. In an isolated (n,n) carbon nanotube there are two bands that cross in a linear fashion at the Fermi level, making the nanotube metallic with a DOS that is constant in a 1.5 eV wide window around the Fermi energy. The presence of the neighbouring tubes causes these two bands to repel, opening up a band gap that can be as large as 0.3 eV. The small dispersion in the plane perpendicular to the rope smears out this gap for a rope with a large cross-sectional area, and we see a pseudogap at the Fermi energy in the DOS where the DOS falls to one third of its value for the isolated tube. This phenomenon should affect many properties of the behavior of ropes of (n,n) nanotubes, which should display a more semimetallic character than expected in transport and doping experiments, with the existence of both hole and electron carriers leading to qualitatively different thermopower and Hall-effect behaviors from those expected for a normal metal. Band repulsion like this can be expected to occur for any tube perturbed by a sufficiently strong interaction, for example, from contact with a surface or with other tubes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel physical phenomenon has been observed following the interaction of an intense (10(19) W/cm(2)) laser pulse with an underdense plasma. Long-lived, macroscopic bubblelike structures have been detected through the deflection that the associated electric charge separation causes in a proton probe beam. These structures are interpreted as the remnants of a cloud of relativistic solitons generated in the plasma by the ultraintense laser pulse. This interpretation is supported by an analytical study of the soliton cloud evolution, by particle-in-cell simulations, and by a reconstruction of the proton-beam deflection.