844 resultados para 091006 Manufacturing Processes and Technologies (excl. Textiles)
Resumo:
Fuel cells are electrochemical energy conversion devices that convert fuel and oxidant electrochemically into electrical energy, water and heat. Compared to traditional electricity generation technologies that use combustion processes to convert fuel into heat, and then into mechanical energy, fuel cells convert the hydrogen and oxygen chemical energy into electrical energy, without intermediate conversion processes, and with higher efficiency. In order to make the fuel cells an achievable and useful technology, it is firstly necessary to develop an economic and efficient way for hydrogen production. Molecular hydrogen is always found combined with other chemical compounds in nature, so it must be isolated. In this paper, the technical, economical and ecological aspects of hydrogen production by biogas steam reforming are presented. The economic feasibility calculation was performed to evaluate how interesting the process is by analyzing the investment, operation and maintenance costs of the biogas steam reformer and the hydrogen production cost achieved the value of 0.27 US$/kWh with a payback period of 8 years. An ecological efficiency of 94.95%, which is a good ecological value, was obtained. The results obtained by these analyses showed that this type of hydrogen production is an environmentally attractive route. © 2013 Elsevier Ltd.
Resumo:
Includes bibliography
Resumo:
Electronic transactions are becoming increasingly commonplace in the countries of Latin America and the Caribbean, despite the collapse of many dotcom firms and the failure of e-commerce to make inroads in the region. In the transport sphere, the gradual incorporation of technology in support of processes and the exchange of money flows between players has brought greater versatility, security and flexibility. In public transport, such initiatives take the form of automatic ticket machines and prepaid card dispensing machines. In urban transit, electronic purses used for the supervision and payment of parking time, and in road pricing, electronic toll systems streamline the process of collecting money; this is especially the case with motorways and urban concessions. And in shipping, electronic transfers are increasingly being used for the payment of customs dues and port charges.In view of the importance of the topic and the interest expressed in it, the Transport Unit has begun a study of these issues, and recently published a paper entitled Sistemas de cobro electrónico de pasajes en el transporte público, ("Electronic systems for payment of tickets in public transport") LC/L.1752-P/E, July 2002, on which this issue of the Bulletin is based.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Tool Condition Monitoring of Single-Point Dresser Using Acoustic Emission and Neural Networks Models
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.
Resumo:
The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.
Resumo:
The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.
Resumo:
Nowadays, being prepared for competition is a basic demand for companies to survive and expand their businesses, requiring more and more productivity enhancements and costs reductions without interfering in the products quality. Thus, it is very important to have a solid management system adapted to each specific market and industrial sector. With that, many companies invest in studies to optimize its processes aiming to increase production. This work has the goal to present a deployment plan to Lean Manufacturing principles on a small fast food enterprise. The methodology consisted on a bibliographic research followed by an observation of the daily reality and problems found in loco. The study showed that the Lean principles can be a competitive advantage when applying the plan on new processes and enable changes on old methods already implemented by the organization. Besides that, contribute to a productivity enhancement and consequently the employee's motivation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Several machining processes have been created and improved in order to achieve the best results ever accomplished in hard and difficult to machine materials. Some of these abrasive manufacturing processes emerging on the science frontier can be defined as ultra-precision grinding. For finishing flat surfaces, researchers have been putting together the main advantages of traditional abrasive processes such as face grinding with constant pressure, fixed abrasives for two-body removal mechanism, total contact of the part with the tool, and lapping kinematics as well as some specific operations to keep grinding wheel sharpness and form. In the present work, both U d-lap grinding process and its machine tool were studied aiming nanometric finishing on flat metallic surfaces. Such hypothesis was investigated on AISI 420 stainless steel workpieces U d-lap ground with different values of overlap factor on dressing (Ud=1, 3, and 5) and grit sizes of conventional grinding wheels (silicon carbide (SiC)=#800, #600, and #300) applying a new machine tool especially designed and built for such finishing. The best results, obtained after 10 min of machining, were average surface roughness (Ra) of 1.92 nm, 1.19-μm flatness deviation of 25.4-mm-diameter workpieces, and mirrored surface finishing. Given the surface quality achieved, the U d-lap grinding process can be included among the ultra-precision abrasive processes and, depending on the application, the chaining steps of grinding, lapping, and polishing can be replaced by the proposed abrasive process.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)