769 resultados para 070302 Agronomy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of major dwarfing genes, Rht-B1 and Rht-D1, in bread (Triticum aestivum L.) and durum (Triticum turgidum L. var. durum) wheats varies with environment. Six reduced-height near-isogenic spring wheat lines, included in the International Adaptation Trial (IAT), were grown in 81 trials around the world. Of the 56 IAT trials yielding > 3 Mg ha(-1), the mean yield of semidwarfs was significantly greater than tails in 54% of trials; in the 27 trials yielding < 3 Mg ha-1, semidwarfs were superior in only 24%. Sixteen pairs of semidwarf-tall near-isolines were grown in six managed drought environment trials (DETs) in northwestern Mexico. In these trials, semidwarfs outyielded talls in all but the most droughted environment (2.5 Mg ha(-1)). The effect of the height alleles varied with genetic background and environment. For both yield and height, variance components for allele and environment by allele interaction were larger than those for genetic background and genetic background by environment. Pattern analysis showed that tall and semidwarf lines had similar adaptation to stressed environments (< 2.8 Mg ha(-1), low rainfall), while semidwarfs yielded more in less stressed environments (> 4.3 Mg ha(-1), high rainfall). The best adapted near-isogenic pair had a Kauz background, where the tall was only 16% taller than the dwarf. In the Kauz-derived pair, the semidwarf outyielded the tall in only 13% of trials with no differences in low yielding trials. This supports the idea that '' short talls '' may be useful in marginal environments (yield < 3 Mg ha(-1)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large portion of the world's poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Thailand there are approximately 6.2 million ha of rain fed lowland rice, which account for 67% of the country's total rice-growing area. This rice system is often characterised by too much and too little water in the same season. Farmers' estimates of their annual losses to drought are as high as 45% in the upper parts of the toposequence. In contrast to irrigated rice systems, gains from crop improvement of rainfed rice have been modest, in part because there has been little effort to breed and select for drought tolerance for the target rainfed environments. The crop improvement strategy being used in Thailand considers three mechanisms that influence yield in the drought prone targets: yield potential as an important mechanism for mild drought (where yield loss is less than 50%), drought escape (appropriate phenology) and drought tolerance traits of leaf water potential, sterility, flower delay and drought response index for more severe drought conditions. Genotypes are exposed to managed drought environments for selection of drought tolerant genotypes. A marker assisted selection (MAS) scheme has been developed and applied for selection of progenies in the backcrossing program. The plant breeding program uses rapid generation advance techniques that enable early yield testing in the target population of environments (TPE) through inter-station (multi-location yield testing) and on-farm trials. A farmer participatory approach has been used to identify the TPE for the breeding program. Four terrace paddy levels have been identified, upper (drought), middle (drought prone to favorable) and lower (flooded). This paper reports the change in the breeding program for the drought prone tainted lowland rice environments of North and Northeast Thailand by incorporating our knowledge on adaptation and on response of rice to drought. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guayule (Parthenium argentatum Gray) is a rubber-producing shrub native to the semi-arid region of north central Mexico and southwestern Texas. Timely harvest is critical to achieve maximum seed viability, vigour, and yield. The objective of this study was to investigate possible indicators of optimum seed maturity in guayule. The optimum harvest maturity time for guayule was studied by comparing quality parameters at different times after flowering. Heat units expressed as growing degree-days after flowering were calculated and related to seed development stages and quality. Seed quality at different stages of development was assessed by germination, capitulum dry mass, 1000 seed mass, and percentage of filled seeds. The maximum seed quality was recorded at 329 growing degree-days (GDD). This was 28 days from time of flowering. At this date, the moisture content of the capitulum was 48% on a wet basis and the colour was comparable to cinnamon (Code 165C) on the Royal Horticultural Society (R.H.S.) standard colour chart. Of all the parameters GDD, 1000 seed mass, and percentage of filled seeds provided a more rapid and reliable measure of optimum seed maturity. Colour identification can be used as an additional indicator. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying the relative contribution of different phosphorus (P) sources to P uptake can lead to greater understanding of the mechanisms that increase available P in integrated P management systems. The P-32-P-33 double isotope labeling technique was used to determine the relative contribution of green manures (GMs) and P fertilizers to P uptake by Setaria grass (Setaria sphacelata) grown in an amended tropical acid soil (Bungor series) in a glasshouse study. The amendments were factorial combinations of GMs (Calopogonium caeruleum , Gliricidia sepium and Imperata cylindrica) and P fertilizers [phosphate rocks (PRs) from North Carolina (NCPR), China (CPR) and Algeria (APR), and triple superphosphate (TSP)]. Dry matter yield, P uptake, and P utilization from the amendments were monitored at 4, 8, and 15 weeks after establishment (WAE). The GMs alone or in combination with P fertilizers contributed less than 5% to total P uptake in this soil, but total P uptake into Setaria plants in the GM treatments was three to four times that of the P fertilizers because the GMs mobilized more soil P. Also, the GMs markedly increased fertilizer P utilization in the combined treatments, from 3% to 39% with CPR, from 6-9% to 19-48% with reactive PRs, and from 6% to 37% with TSP in this soil. Both P GM and the other decomposition products were probably involved in reducing soil P-retention capacity. Mobilization of soil P was most likely the result of the action of the other decomposition products. These results demonstrate the high potential of integrating GMs and PRs for managing P in tropical soils and the importance of the soil P mobilization capacity of the organic components. Even the low-quality Imperata GM enhanced the effectiveness of the reactive APR more than fourfold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sugarcane plant, with its enormous genetic capacity to accumulate carbon and manufacture and store sucrose, also has the potential to accumulate carbon and metabolically create a wide range of new molecules for industrial and other commercial uses. The extent to which this change can be developed and realised commercially is a function of the technical competence of the industry's R&D capacity, the reality of the commercial drivers which support this global agenda, and the determination of the industry to achieve such goals. The outcomes of existing R&D work already strongly support the technical challenges of this opportunity in sugarcane. The current challenge remains the commercialisation of the technology in a global market in which the current business structures and systems for the manufacture and distribution of existing (competitive) products makes the development of new product lines a higher risk than might otherwise be the case. This is despite all the claims that global markets are expecting and (in some cases) legislating the creation of more sustainable production systems. The options and issues for the development of a sugarcane biofactory system are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Mekong region, most paddies in rainfed lowland rice (Oryza sativa L.) lie in a sequence on gentle sloping land, and grain yield (GY) often depends on the toposequence position. There is, however, lack of information on toposequential effects on field water supply in rainfed lowland rice and how that influences GY. A total of eight field experiments were carried out on sandy, coarse-textured soils in Southern Laos (Champassak Province and Savannakhet Province) over three wet seasons (2000-2002). Components of the water balance, including downward and lateral water movement (D and L, respectively), were quantified at three different positions along toposequences (top, middle and bottom). GY, days-to-flower (DTF) and rainfall were measured, and the water productivity (WP) was determined. In most experiments, standing water disappeared first in the top position and gradually in lower positions. This was associated with the observation that when there was standing water in the field, the higher position had larger D in both the provinces and also larger L in Champassak Province. However, in one experiment, water loss appeared later in the higher position, as the result of lower L, apparently due to some water inputs other than rainfall occurring at this position. Despite larger D plus L at the top position, seasonal sum of D and L were not much affected by the toposequence position, as the daily rate of D plus L became minimal when the standing water was lost earlier in the top position. Lower GY was associated with earlier disappearance of standing water from the field. Relatively low GY was expected in the top toposequence position. This was clearly shown in the toposequence of Phonthong, Champassak Province, as the timing of standing water disappearance relative to flowering was earlier in the top position. Variation in GY across the toposequence positions was coupled with the WP variation, and both GY and WP tended to decline with increased DTF. Therefore, variation in productivity of rainfed lowland rice across toposequence positions depends mainly on the field water status around flowering time. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drought is a major constraint for rice production in the rainfed lowlands in Southeast Asia and Eastern India. The breeding programs for tainted lowland rice in these regions focus on adaptation to a range of drought conditions. However, a method of selection of drought tolerant genotypes has not been established and is considered to be one of the constraints faced by rice breeders. Drought response index (DRI) is based on grain yield adjusted for variation in potential yield and flowering date, and has been used recently, but its consistency among drought environments and hence its usefulness is not certain. In order to establish a selection method and subsequently to identify donor parents for drought resistance breeding, a series of experiments with 15 contrasting genotypes was conducted under well-watered and managed drought conditions at two sites for 5 years in Cambodia. Water level in the field was recorded and used to estimate the relative water level (WLREL) around flowering as an index of the severity of water deficit at the time of flowering for each entry. This was used to determine if DRI or yield reduction was due to drought tolerance or related to the amount of available water at flowering, i.e. drought escape. Grain yield reduction due to drought ranged from 12 to 46%. The drought occurred mainly during the reproductive phase, while four experiments had water stress from the early vegetative stage. There was significant variation for water availability around flowering among the nine experiments and this was associated with variation in mean yield reduction. Genotypic variation in DRI was consistent among most experiments, and genotypic mean DRI ranged from -0.54 to 0.47 (LSD 5% = 0.47). Genotypic variation in DRI was not related to WLREL around flowering in the nine environments. It is concluded that selection for DRI under drought conditions would allow breeders to identify donor lines with high drought tolerance as an important component of breeding better adapted varieties for the rainfed lowlands; two genotypes were identified with high DRI and low yield reduction and were subsequently used in the breeding program in Cambodia. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is evidence that high-tillering, small-panicled pearl millet landraces are better adapted to the severe, unpredictable drought stress of the and zones of NW India than are low-tillering, large-panicled modern varieties, which significantly outyield the landraces under favourable conditions. In this paper, we analyse the relationship of and zone adaptation with the expression, under optimum conditions, of yield components that determine either the potential sink size or the ability to realise this potential. The objective is to test whether selection under optimal conditions for yield components can identify germplasm with adaptation to and zones in NW India, as this could potentially improve the efficiency of pearl millet improvement programs targeting and zones. We use data from an evaluation of over 100 landraces from NW India, conducted for two seasons under both severely drought-stressed and favourable conditions in northwest and south India. Trial average grain yields ranged from 14 g m(-2) to 182 g m(-2). The landraces were grouped into clusters, based on their phenology and yield components as measured under well-watered conditions in south India. In environments without pre-flowering drought stress, tillering type had no effect on potential sink size, but low-tillering, large-panicled landraces yielded significantly more grain, as they were better able to realise their potential sink size. By contrast, in two low-yielding and zone environments which experienced pre-anthesis drought stress, low-fillering, large-panicled landraces yielded significantly less grain than high-tillering ones with comparable phenology, because of both a reduced potential sink size and a reduced ability to realise this potential. The results indicate that the high grain yield of low-tillering, large-panicled landraces under favourable conditions is due to improved partitioning, rather than resource capture. However, under severe stress with restricted assimilate supply, high-tillering, small-panicled landraces are better able to produce a reproductive sink than are large-panicled ones. Selection under optimum conditions for yield components representing a resource allocation pattern favouring high yield under severe drought stress, combined with a capability to increase grain yield if assimilates are available, was more effective than direct selection for grain yield in identifying germplasm adapted to and zones. Incorporating such selection in early generations of variety testing could reduce the reliance on random stress environments. This should improve the efficiency of millet breeding programs targeting and zones. (c) 2005 Elsevier B.V. All rights reserved.