944 resultados para 0502 Environmental Science and Management
Resumo:
Schedule of Debt Service and Coverage for Iowa State University of Science and Technology for the Academic Building Revenue Bond Funds for the year ended June 30, 2009
Resumo:
Audit report on the Student Health Facility Revenue Bond Funds of Iowa State University of Science and Technology for the year ended June 30, 2009
Resumo:
The most common trends observed in ammonoid evolution during ecologically stable periods are characterized by an increase of shell curvature (e.g. evolute to involute), by the development of more complex ornamentation (flexuosity of ribbing, appearance of nodes and spines) and by a long term increase of the suture line's fractal dimension. Major evolutionary jumps in ammonoids occur during severe extinction events, and are characterized by the sudden appearance of simple, primitive-looking forms which are similar to remote ancestors of their more complex immediate progenitors. Such forms are interpreted as atavistic. According to this hypothesis, homeomorphic species generated during such sublethal stress events can be separated by several millions of years.
Resumo:
Audit report of Iowa State University of Science and Technology, Ames, Iowa, (Iowa State University) for the year ended June 30, 2009
Resumo:
Agreed-upon procedures report on the Iowa State Center Business Office of Iowa State University of Science and Technology for the year ended June 30, 2009
Resumo:
Report on a review of selected general and application controls over the Iowa State University of Science and Technology (Iowa State University) Purchase Order/Requisition System for the period of March 20 through April 28, 2009
Resumo:
Report on Iowa State University of Science and Technology, Ames, Iowa, for the year ended June 30, 2009
Resumo:
Audit report on the Student Health Facility Revenue Bond Funds of Iowa State University of Science and Technology for the year ended June 30, 2010
Resumo:
Report on a review of selected general and application controls over the Iowa State University of Science and Technology Accounts Receivable System for the period of March 29, 2010 through May 6, 2010
Resumo:
Audit report of Iowa State University of Science and Technology, Ames, Iowa (Iowa State University) as of and for the years ended June 30, 2010 and 2009
Resumo:
This paper presents a thermal modeling for power management of a new three-dimensional (3-D) thinned dies stacking process. Besides the high concentration of power dissipating sources, which is the direct consequence of the very interesting integration efficiency increase, this new ultra-compact packaging technology can suffer of the poor thermal conductivity (about 700 times smaller than silicon one) of the benzocyclobutene (BCB) used as both adhesive and planarization layers in each level of the stack. Thermal simulation was conducted using three-dimensional (3-D) FEM tool to analyze the specific behaviors in such stacked structure and to optimize the design rules. This study first describes the heat transfer limitation through the vertical path by examining particularly the case of the high dissipating sources under small area. First results of characterization in transient regime by means of dedicated test device mounted in single level structure are presented. For the design optimization, the thermal draining capabilities of a copper grid or full copper plate embedded in the intermediate layer of stacked structure are evaluated as a function of the technological parameters and the physical properties. It is shown an interest for the transverse heat extraction under the buffer devices dissipating most the power and generally localized in the peripheral zone, and for the temperature uniformization, by heat spreading mechanism, in the localized regions where the attachment of the thin die is altered. Finally, all conclusions of this analysis are used for the quantitative projections of the thermal performance of a first demonstrator based on a three-levels stacking structure for space application.
Resumo:
Report on Iowa State University of Science and Technology, Ames, Iowa, for the year ended June 30, 2010