975 resultados para |Cu x|[Si yAl]-MFI
Resumo:
A framework is presented for modeling the nucleation in the constitutionally supercooled liquid ahead of the advancing solid/liquid interface. The effects of temperature gradient, imposed velocity, slope of liquidus, and initial concentration have been taken into account in this model by considering the effect of interface retardation, which is caused by solute buildup at the interface. Furthermore, the effect of solute concentration on the chemical driving force for nucleation has been considered in this model. The model is used for describing the nucleation of Al-Si and Al-Cu alloys. It was found that the solute of Si has a significant impact on the chemical driving force for nucleation in AI-Si alloys whereas Cu has almost no effect in Al-Cu alloys.
Resumo:
The 6% Ge isocomposition profile change of individual SiGe islands during Si capping at 640 degrees C is investigated by atomic force microscopy combined with a selective etching procedure. The island shape transforms from a dome to a {103}-faceted pyramid at a Si capping thickness of 0.32 nm, followed by the decreasing of pyramid facet inclination with increasing Si capping layer thickness. The 6% Ge isocomposition profiles show that the island with more highly Si enriched at its one base corner before Si capping becomes to be more highly Si intermixed along pyramid base diagonals during Si capping. This Si enrichment evolution inside an island during Si capping can be attributed to the exchange of capped Si atoms that aggregated to the island by surface diffusion with Ge atoms from inside the island by both atomic surface segregation and interdiffusion rather than to the atomic interdiffusion at the interface between the island and the Si substrate. In addition, the observed Si enrichment along the island base diagonals is attempted to be explained on the basis of the elastic constant anisotropy of the Si and Ge materials in (001) plane. (c) 2006 American Institute of Physics.
Resumo:
The oxidation behaviour of porous, sintered iron was studied by thermo-gravimetric analysis (TGA), at temperatures between 300oC and 700oC, in a flowing atmosphere of 20% O2/80% N2. Samples for TGA tests were compacted from pure iron powder, at 150MPa to 550MPa, and vacuum sintered at 1120oC. The mass gain of samples during oxidation was recorded continuously for a period of 24 hours. It was found that the oxidation mass gain of PM samples depended on the permeability of the pore structure and the temperature. At low temperatures, the oxidising gas was able to permeate through the pore structure, causing the oxidation of a large active surface area. At high temperatures the active surface area was smaller, because oxygen diffusing into the pore structure, from the external atmosphere, was adsorbed by pore surfaces close to the external surface of the compact. Although the weight of the external oxide scale on compacts increased with increasing oxidation temperature, the absence of oxide in the core porosity in compacts oxidised at higher temperatures resulted in smaller mass gains than were observed for compacts oxidised at lower temperatures. The heat generated by the oxidation of the large active surface areas of porous samples was studied by thermo-calorimetric analysis (TCA). It was determined that this phenomenon could raise the core temperature of samples significantly above the ambient furnace temperature, and affecting the morphology of the oxide scale formed. The effects (on oxidation behaviour at 500oC) of small, elemental alloy additions of Al, Cu, P and Si to pure iron powder were studied. It was found that elements that promote pore rounding during sintering caused a significant reduction in the mass gain rate of the PM alloys, compared to the PM pure iron. The oxidation resistance due to these elements prevented pore closure by oxide growth, so that the active surface area of these PM alloys remained high. The PM alloys were also studied by thermo-mechanical analysis (TMA, dilatometry), to determine their dimensional stability during sintering and subsequent elevated temperature service. The oxidation experiment was augmented with optical and electron microscopy, and X-ray analysis of alloy and scale compositions.
Resumo:
Bedrock geochemical analysis, coupled with detailed data analysis, was carried out on some 260 samples taken from two areas of 'the Harlech Dome, near Dolgellau, North Wales. This was done to determine if rocks from mineralised and non-mineralised areas could be distinguished, and to determine mineralisation types and wall rock alterations. The Northern Area, near Talsarnau, has no recorded mineralisation, while the Southern Area, near Bontddu, has been exploited for gold. The rocks sampled, in both areas, were from the Cambrian Gamlan Flags, Clogau Shales, Vigra Flags, later vein materials, and igneous intrusions. All samples were analysed, using a new rapid, atomic absorption spectrophotometric technique, for Si, AI, Fe, Cu, Ni, Zn, Pb, Sr, Hg, and Ba. In addition 60 samples were analysed by X-ray fluorescence for Mn, Ti, Ca, K, Na, P, Cr, Ce, La, S, Y , Rh, and Th. Total CO2 was determined, on selected samples, using a combustion technique. Elemental distributions, for each rock type, in each area, were plotted, and means, standard deviations, and enrichment indices were calculated. Multivariate statistical analysis on the results distinguished a Cu-type mineralisation in the Northern area, and both Cu and Pb/Zn types in the Southern Area. It also showed the Northern Area to be less strongly mineralised than the Southern one in which both mineralisation types are associated with wall rock alteration. Elemental associations and trends due to sedimentary processes were distinguished from those related to mineralisation. Hg is related to mineralisation, and plots of factor scores, on the sampling grid, produced clusters of mineralisation related factors in areas of known mineralisation. A double Fourier Trend Analysis program, with a wavelength search routine, was developed and used to recognise sedimentary trends for Sr. Y., Rb, and Th. These trends were interpreted to represent areas of low pH and reducing conditions. They also indicate that the supply of sediment remained constant over Gamlan, Clogau, and Vigra times. The trend surface of Hg showed no association with rock type. It is shown that analysis of a small number of samples, for a carefully selected number of elements, with detailed data analysis, can provide more useful information than analysis of a large number of samples for many elements. The mineralisation is suggested to have been the result of water solutions leaching ore metals from the sedimentary rocks and redepositing them in veins.
Resumo:
We have investigated the evolution of radiation damage and changes in hardness of sputter-deposited Cu/V nanolaminates upon room temperature helium ion irradiation. As the individual layer thickness decreases from 200 to 5 nm, helium bubble density and radiation hardening both decrease. The magnitude of radiation hardening becomes negligible for individual layer thickness of 2.5 nm or less. These observations indicate that nearly immiscible Cu/V interface can effectively absorb radiation-induced point defects and reduce their concentrations.
Resumo:
Helium ion-irradiation experiments have been performed in single layer Cu films, Nb films and Cu/Nb multilayer films with layer thickness varying from 2.5 nm to 100 nm each layer. Peak helium concentration approaches a few atomic percent with 6-9 displacement-per-atom in Cu and Nb. He bubbles were observed in single layer Cu and Nb films, as well as in Cu 100 nm/Nb 100 nm multilayers with helium bubbles aligned along layer interfaces. Helium bubbles are not resolved via transmission electron microscopy in Cu 2.5 nm/Nb 2.5 nm multilayers. These studies indicate that layer interface may play an important role in annihilating ion-irradiation induced defects such as vacancies and interstitials and have implications in improving the radiation tolerance of metallic materials using nanostructured multilayers. 2007 Elsevier B.V. All rights reserved.
Resumo:
An approach to transfer a high-quality Si layer for the fabrication of silicon-on-insulator wafers has been proposed based on the investigation of platelet and crack formation in hydrogenated epitaxialSi/Si0.98B0.02/Si structures grown by molecular-beam epitaxy. H-related defect formation during hydrogenation was found to be very sensitive to the thickness of the buried Si0.98B0.02 layer. For hydrogenated Si containing a 130nm thick Si0.98B0.02 layer, no platelets or cracking were observed in the B-doped region. Upon reducing the thickness of the buried Si0.98B0.02 layer to 3nm, localized continuous cracking was observed along the interface between the Si and the B-doped layers. In the latter case, the strains at the interface are believed to facilitate the (100)-oriented platelet formation and (100)-oriented crack propagation.
Resumo:
We report a process for the lift-off of an ultrathin Si layer. By plasma hydrogenation of a molecular-beam-epitaxy-grown heterostructure of SiSb-doped-SiSi, ultrashallow cracking is controlled to occur at the depth of the Sb-doped layer. Prior to hydrogenation, an oxygen plasma treatment is used to induce the formation of a thin oxide layer on the surface of the heterostructure. Chemical etching of the surface oxide layer after hydrogenation further thins the thickness of the separated Si layer to be only 15 nm. Mechanisms of hydrogen trapping and strain-facilitated cracking are discussed. 2005 American Institute of Physics.
Resumo:
The reactivity of Amberlite (IRA-67) base "heterogeneous" resin in Sonogashira cross-coupling of 8-bromoguanosine 1 with phenylacetylene 3 to give 2 has been examined. Both 1 and 2 coordinate to Pd and Cu ions, which explains why at equivalent catalyst loadings, the homogeneous reaction employing triethylamine base is poor yielding. X-ray photo-electron spectroscopy (XPS) has been used to probe and quantify the active nitrogen base sites of the Amberlite resin, and postreaction Pd and Cu species. The Pd2Cl3(PPh)2 precatalyst and CuI cocatalyst degrade to give Amberlite-supported metal nanoparticles (average size 2.7 nm). The guanosine product 2 formed using the Amberlite Pd/Cu catalyst system is of higher purity than reactions using a homogeneous Pd precatalyst, a prerequisite for use in biological applications. Copyright Taylor and Francis Group, LLC.
Resumo:
The synthesis and crystal structure of a novel one-dimensional Cu(II) compound [Cu(1,2-bis(tetrazol-1-yl)ethane)3](ClO4)2 are described. The single-crystal X-ray structure determination was carried out at 298 K. The molecular structure consists of a linear chain in which the Cu(II) ions are linked by three N4,N4' coordinating bis(tetrazole) ligands in syn conformation. The Cu(II) ions are in a Jahn-Teller distorted octahedral environment (Cu(1)-N(11)=2.034(2) , Cu(1)-N(21)=2.041(2) and Cu(1)-N(31)=2.391(2) ). The CuCu separations are 7.420(3) .
Resumo:
The reaction of Cs4[Re6Te8(CN)6]2H2O with Cu(en)2Cl2 in water affords crystals of a cluster complex [{Cu(H2O)(en) 2}{Cu(en)2}Re6Te8(CN)6]3H2O. The structure of the compound is determined by single crystal X-ray diffraction (a = 10.8082(4) , b = 16.5404(6) , c = 24.6480(7) , = 92.696(1), V = 4401.5(3) 3, Z = 4, space group P21/n, R 1 = 0.0331, wR 2 (all data) = 0.0652). In the complex, cluster [Re6Te8(CN)6]4- anions are linked by Cu2+ cations into zigzag chains through cyanide bridges. The coordination environment of the copper cations is complemented by ethylenediamine molecules. Each of the cluster anions is additionally coordinated by a terminal fragment {Cu(H2O)(en)2}. 2014 Pleiades Publishing, Ltd.
Resumo:
The present research concentrates on the fabrication of bulk aluminum matrix nanocomposite structures with carbon nanotube reinforcement. The objective of the work was to fabricate and characterize multi-walled carbon nanotube (MWCNT) reinforced hypereutectic Al-Si (23 wt% Si, 2 wt% Ni, 1 wt% Cu, rest Al) nanocomposite bulk structure with nanocrystalline matrix through thermal spray forming techniques viz. plasma spray forming (PSF) and high velocity oxy-fuel (HVOF) spray forming. This is the first research study, which has shown that thermal spray forming can be successfully used to synthesize carbon nanotube reinforced nanocomposites. Microstructural characterization based on quantitative microscopy, scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and X ray photoelectron spectroscopy (XPS) confirms (i) retention and macro/sub-macro level homogenous distribution of multiwalled carbon nanotubes in the Al-Si matrix and (ii) evolution of nanostructured grains in the matrix. Formation of ultrathin -SiC layer on MWCNT surface, due to chemical reaction of Si atoms diffusing from Al-Si alloy and C atoms from the outer walls of MWCNTs has been confirmed theoretically and experimentally. The presence of SiC layer at the interface improves the wettability and the interfacial adhesion between the MWCNT reinforcement and the Al-Si matrix. Sintering of the as-sprayed nanocomposites was carried out in an inert environment for further densification. As-sprayed PSF nanocomposite showed lower microhardness compared to HVOF, due to the higher porosity content and lower residual stress. The hardness of the nanocomposites increased with sintering time due to effective pore removal. Uniaxial tensile test on CNT-bulk nanocomposite was carried out, which is the first ever study of such nature. The tensile test results showed inconsistency in the data attributed to inhomogeneous microstructure and limitation of the test samples geometry. The elastic moduli of nanocomposites were computed using different micromechanics models and compared with experimentally measured values. The elastic moduli of nanocomposites measured by nanoindentation technique, increased gradually with sintering attributed to porosity removal. The experimentally measured values conformed better with theoretically predicted values, particularly in the case of Hashin-Shtrikman bound method.
Resumo:
Nanocrystalline and bulk samples of Fe-doped CuO were prepared by coprecipitation and ceramic methods. Structural and compositional analyses were performed using X-ray diffraction, SEM, and EDAX. Traces of secondary phases such as CuFe2O4, Fe3O4, and -Fe2O3 having peaks very close to that of the host CuO were identified from the Rietveld profile analysis and the SAED pattern of bulk and nanocrystalline Cu0.98Fe0.02O samples. Vibrating Sample Magnetometer (VSM) measurements show hysteresis at 300K for all the samples. The ferrimagnetic Neel transition temperature () was found to be around 465C irrespective of the content of Fe, which is close to the value of cubic CuFe2O4. High-pressure X-Ray diffraction studies were performed on 2% Fe-doped bulk CuO using synchrotron radiation. From the absence of any strong new peaks at high pressure, it is evident that the secondary phases if present could be less than the level of detection. Cu2O, which is diamagnetic by nature, was also doped with 1% of Fe and was found to show paramagnetic behavior in contrast to the Fe doped CuO. Hence the possibility of intrinsic magnetization of Fe-doped CuO apart from the secondary phases is discussed based on the magnetization and charge state of Fe and the host into which it is substituted.
Resumo:
The main objective of the project was to develop a geochemical method for exploration of ores associated with granitic rocks. Fe and Mn oxidates were sampled in streambeds and lakes from 129 localities in Southeastern Norway. 65 of these localities are situated in the northern Oslo Graben. The samples were examined mineralogically and chemically by a variety of methods. Geochemical maps of the element content in oxidates show regional distribution patterns for several elements. Sampling and analysis of oxidates can be used in exploration for mineralizations such as the Skrukkelia Mo-deposit in the northern Oslo Graben. New anomalies (especially for Zn and W) have been detected. Appendix I contains a description of samples, chemical and mineralogical determinations performed on the samples, backscattered electron image-, X-ray image- and scanning electron image pictures of the oxidate preparates. Appendix II contains spectral plots, point analysis with the microprobe, X-ray diffractograms, analytical results, correlation coefficient matrix, scatterplots, frequency distributions and information on data storage. Appendix III containS maps of the element content in oxidates.
Resumo:
Thirty seven deep-sea sediment cores from the Arabian Sea were studied geochemically (49 major and trace elements) for four time slices during the Holocene and the last glacial, and in one high sedimentation rate core (century scale resolution) to detect tracers of past variations in the intensity of the atmospheric monsoon circulation and its hydrographic expression in the ocean surface. This geochemical multi-tracer approach, coupled with additional information on the grain size composition of the clastic fraction, the bulk carbonate and biogenic opal contents makes it possible to characterize the sedimentological regime in detail. Sediments characterized by a specific elemental composition (enrichment) originated from the following sources: river suspensions from the Tapti and Narbada, draining the Indian Deccan traps (Ti, Sr); Indus sediments and dust from Rajasthan and Pakistan (Rb, Cs); dust from Iran and the Persian Gulf (Al, Cr); dust from central Arabia (Mg); dust from East Africa and the Red Sea (Zr/Hf, Ti/Al). Corg, Cd, Zn, Ba, Pb, U, and the HREE are associated with the intensity of upwelling in the western Arabian Sea, but only those patterns that are consistently reproduced by all of these elements can be directly linked with the intensity of the southwest monsoon. Relying on information from a single element can be misleading, as each element is affected by various other processes than upwelling intensity and nutrient content of surface water alone. The application of the geochemical multi-tracer approach indicates that the intensity of the southwest monsoon was low during the LGM, declined to a minimum from 15,000-13,000 14C year BP, intensified slightly at the end of this interval, was almost stable during the Blling, Allerd and the Younger Dryas, but then intensified in two abrupt successions at the end of the Younger Dryas (9900 14C year BP) and especially in a second event during the early Holocene (8800 14C year BP). Dust discharge by northwesterly winds from Arabia exhibited a similar evolution, but followed an opposite course: high during the LGM with two primary sources-the central Arabian desert and the dry Persian Gulf region. Dust discharge from both regions reached a pronounced maximum at 15,000-13,000 14C year. At the end of this interval, however, the dust plumes from the Persian Gulf area ceased dramatically, whereas dust discharge from central Arabia decreased only slightly. Dust discharge from East Africa and the Red Sea increased synchronously with the two major events of southwest monsoon intensification as recorded in the nutrient content of surface waters. In addition to the tracers of past dust flux and surface water nutrient content, the geochemical multi-tracer approach provides information on the history of deep sea ventilation (Mo, S), which was much lower during the last glacial maximum than during the Holocene. The multi-tracer approach-i.e. a few sedimentological parameters plus a set of geochemical tracers widely available from various multi-element analysis techniques-is a highly applicable technique for studying the complex sedimentation patterns of an ocean basin, and, specifically in the case of the Arabian Sea, can even reveal the seasonal structure of climate change.