874 resultados para web technology
Resumo:
Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.
Resumo:
The CDIO (Conceive-Design-Implement-Operate) Initiative has been globally recognised as an enabler for engineering education reform. With the CDIO process, the CDIO Standards and the CDIO Syllabus, many scholarly contributions have been made around cultural change, curriculum reform and learning environments. In the Australasian region, reform is gaining significant momentum within the engineering education community, the profession, and higher education institutions. This paper presents the CDIO Syllabus cast into the Australian context by mapping it to the Engineers Australia Graduate Attributes, the Washington Accord Graduate Attributes and the Queensland University of Technology Graduate Capabilities. Furthermore, in recognition that many secondary schools and technical training institutions offer introductory engineering technology subjects, this paper presents an extended self-rating framework suited for recognising developing levels of proficiency at a preparatory level. A demonstrator mapping tool has been created to demonstrate the application of this extended graduate attribute mapping framework as a precursor to an integrated curriculum information model.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used and formed the back bone or urban management systems. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This research paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place of residents, workers and visitors. The research paper reports and introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
Literature on Ubiquitous Eco Cities highlights three key issues to be carefully considered while planning, developing and managing such cities: ‘technology, infrastructure and management’. This paper discusses the recent developments in telecommunication networks, trends in technology convergence and both of their implications on the management of Ubiquitous Eco Cities. The paper also introduces recent approaches on urban management, such as intelligent urban management systems, that are potentially suitable for Ubiquitous Eco Cities.
Resumo:
The artwork describes web as a network environment and a space where people are connected and as a result, it can reshape you as an interactive participant who is able to regenerate an object as a new form through a truly collaborative and cooperative interactions with others. The artwork has been created based on the research findings of characteristic of web: 1) Participatory (Slater 2002, p.536), 2) Communicational (Rheingold 1993), 3) Connected (Jordan 1999, 80), and 4) Stylising (Jordan 1999, 69). The artwork has conceptualised and visualised those characteristics of web based on principles of graphic design and visual communication.
Resumo:
Web design elements are significantly important for web designers to understand target users in terms of effective communication design and to develop a successful web site. However, web design elements generally known are broad and various that are hardly conceived and classified, so many practitioners and design researchers approach to web design elements based on graphic and visual design that mainly focus on print media design. This paper discusses about web design elements in terms of online user experience, as web media certainly differs from print media. It aims to propose a fundamentally new concept, called 'UEDUs: User Experience Design Units' which enables web designers to define web design elements and conceptualise user experience depending on the purpose of web site development.
Resumo:
Intuitively, any `bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distri- butions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.
Resumo:
The New Zealand green lipped mussel preparation Lyprinol is available without a prescription from a supermarket, pharmacy or Web. The Food and Drug Administration have recently warned Lyprinol USA about their extravagant anti-inflammatory claims for Lyprinol appearing on the web. These claims are put to thorough review. Lyprinol does have anti-inflammatory mechanisms, and has anti-inflammatory effects in some animal models of inflammation. Lyprinol may have benefits in dogs with arthritis. There are design problems with the clinical trials of Lyprinol in humans as an anti-inflammatory agent in osteoarthritis and rheumatoid arthritis, making it difficult to give a definite answer to how effective Lyprinol is in these conditions, but any benefit is small. Lyprinol also has a small benefit in atopic allergy. As anti-inflammatory agents, there is little to choose between Lyprinol and fish oil. No adverse effects have been reported with Lyprinol. Thus, although it is difficult to conclude whether Lyprinol does much good, it can be concluded that Lyprinol probably does no major harm.
Resumo:
Older drivers represent the fastest growing segment of the road user population. Cognitive and physiological capabilities diminishes with ages. The design of future in-vehicle interfaces have to take into account older drivers' needs and capabilities. Older drivers have different capabilities which impact on their driving patterns and subsequently on road crash patterns. New in-vehicle technology could improve safety, comfort and maintain elderly people's mobility for longer. Existing research has focused on the ergonomic and Human Machine Interface (HMI) aspects of in-vehicle technology to assist the elderly. However there is a lack of comprehensive research on identifying the most relevant technology and associated functionalities that could improve older drivers' road safety. To identify future research priorities for older drivers, this paper presents: (i) a review of age related functional impairments, (ii) a brief description of some key characteristics of older driver crashes and (iii) a conceptualisation of the most relevant technology interventions based on traffic psychology theory and crash data.
Resumo:
The social tags in web 2.0 are becoming another important information source to profile users' interests and preferences for making personalized recommendations. However, the uncontrolled vocabulary causes a lot of problems to profile users accurately, such as ambiguity, synonyms, misspelling, low information sharing etc. To solve these problems, this paper proposes to use popular tags to represent the actual topics of tags, the content of items, and also the topic interests of users. A novel user profiling approach is proposed in this paper that first identifies popular tags, then represents users’ original tags using the popular tags, finally generates users’ topic interests based on the popular tags. A collaborative filtering based recommender system has been developed that builds the user profile using the proposed approach. The user profile generated using the proposed approach can represent user interests more accurately and the information sharing among users in the profile is also increased. Consequently the neighborhood of a user, which plays a crucial role in collaborative filtering based recommenders, can be much more accurately determined. The experimental results based on real world data obtained from Amazon.com show that the proposed approach outperforms other approaches.
Resumo:
The social tags in web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.
Resumo:
Recommender Systems is one of the effective tools to deal with information overload issue. Similar with the explicit rating and other implicit rating behaviours such as purchase behaviour, click streams, and browsing history etc., the tagging information implies user’s important personal interests and preferences information, which can be used to recommend personalized items to users. This paper is to explore how to utilize tagging information to do personalized recommendations. Based on the distinctive three dimensional relationships among users, tags and items, a new user profiling and similarity measure method is proposed. The experiments suggest that the proposed approach is better than the traditional collaborative filtering recommender systems using only rating data.
Resumo:
Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach,which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this paper we propose two approaches which measure multi-level association rules to help evaluate their interestingness. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.
Resumo:
Services in the form of business services or IT-enabled (Web) Services have become a corporate asset of high interest in striving towards the agile organisation. However, while the design and management of a single service is widely studied and well understood, little is known about how a set of services can be managed. This gap motivated this paper, in which we explore the concept of Service Portfolio Management. In particular, we propose a Service Portfolio Management Framework that explicates service portfolio goals, tasks, governance issues, methods and enablers. The Service Portfolio Management Framework is based upon a thorough analysis and consolidation of existing, well-established portfolio management approaches. From an academic point of view, the Service Portfolio Management Framework can be positioned as an extension of portfolio management conceptualisations in the area of service management. Based on the framework, possible directions for future research are provided. From a practical point of view, the Service Portfolio Management Framework provides an organisation with a novel approach to managing its emerging service portfolios.
Resumo:
Recommender systems are widely used online to help users find other products, items etc that they may be interested in based on what is known about that user in their profile. Often however user profiles may be short on information and thus when there is not sufficient knowledge on a user it is difficult for a recommender system to make quality recommendations. This problem is often referred to as the cold-start problem. Here we investigate whether association rules can be used as a source of information to expand a user profile and thus avoid this problem, leading to improved recommendations to users. Our pilot study shows that indeed it is possible to use association rules to improve the performance of a recommender system. This we believe can lead to further work in utilising appropriate association rules to lessen the impact of the cold-start problem.