936 resultados para vibrational energy level
Resumo:
Transport is responsible for 41% of CO2 emissions in Spain, and around 65% of that figure is due to road traffic. Tolled motorways are currently managed according to economic criteria: minimizing operational costs and maximizing revenues from tolls. Within this framework, this paper develops a new methodology for managing motorways based on a target of maximum energy efficiency. It includes technological and demand-driven policies, which are applied to two case studies. Various conclusions emerge from this study. One is, that the use of intelligent payment systems is recommended; and another, is that the most sustainable policy would involve defining the most efficient strategy for each motorway section, including the maximum use of its capacity, the toll level which attracts the most vehicles, and the optimum speed limit for each type of vehicle.
Resumo:
So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied.
Resumo:
The future economic growth for India is likely to result in rapid and accelerated surge in energy demand, with expected shortages in terms of supply. Many of its current policies and strategies are aimed at the improvement and possible maximization of energy production from the renewable sector. It is also clear that while energy conservation and energy efficiency can make an important contribution, renewable energies will be essential to the solution and are likely to play an increasingly important role for providing enhanced energy access, reducing consumption of fossil fuels, and helping India pursue its low-carbon progressive pathway. However, most of the states in India, like the northernmost state of Jammu and Kashmir, have experienced an energy crisis over a sustained period of time and the government both at center and state level has to embark upon with these pressing issues in a more sustainable manner and accordingly initiate various renewable energy projects within these states. This paper will provide a broad-spectrum view about the energy situation within Jammu and Kashmir and will highlight the current policies along with future strategies for the optimal utilization of renewable energy resources.
Resumo:
Although others regulations regarding feed-in tariffs for photovoltaics (PV) existed in Spain previously, the one that meant a paradigm change was the introduction in 2007 of law R.D.661/2007 which established a feed-in tariff of 41,75 cents/kWh if the installed capacity was greater than 100KWp and 44,04 cents/kWh if it was smaller. The high level of the subsidies together with the lack of a limit for the total installed capacity originates the well-known Spanish photovoltaic boom. In September 2008 the installed PV capacity accounted for 3.2GWp (while the official objective stated in the national renewable roadmap was only 400MWp). To avoid this situation a new law, R.D. 1578/2008, was proclaimed which established a decreasing feed-in tariff of 32 cents/kWh (for ground installations) and 34 cents/kWh (for rooftops) and it limited the annual installed capacity to 500MWp. Although it was successful in limiting the PV subsidies total costs, the successive and sudden changes in regulations resulted very harmful to the local PV industry. In this article, the strong influence of feed-in tariff in the development of PV installed capacity and market evolution in Spain will be analyzed in detail. In addition, a comparison with other subsidized technologies which installed capacity has had a smoother evolution, as wind energy, will be presented.
Resumo:
Polysilicon cost impacts significantly on the photovoltaics (PV) cost and on the energy payback time. Nowadays, the besetting production process is the so called Siemens process, polysilicon deposition by chemical vapor deposition (CVD) from Trichlorosilane. Polysilicon purification level for PV is to a certain extent less demanding that for microelectronics. At the Instituto de Energía Solar (IES) research on this subject is performed through a Siemens process-type laboratory reactor. Through the laboratory CVD prototype at the IES laboratories, valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained. Polysilicon deposition by CVD is a complex process due to the big number of parameters involved. A study on the influence of temperature and inlet gas mixture composition on the polysilicon deposition growth rate, based on experimental experience, is shown. Moreover, CVD process accounts for the largest contribution to the energy consumption of the polysilicon production. In addition, radiation phenomenon is the major responsible for low energetic efficiency of the whole process. This work presents a model of radiation heat loss, and the theoretical calculations are confirmed experimentally through a prototype reactor at our disposal, yielding a valuable know-how for energy consumption reduction at industrial Siemens reactors.
Resumo:
The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed. Calculations are performed with the Monte Carlo transport-coupled depletion code SERPENT together with post-processing tools.
Resumo:
The first level data cache un modern processors has become a major consumer of energy due to its increasing size and high frequency access rate. In order to reduce this high energy con sumption, we propose in this paper a straightforward filtering technique based on a highly accurate forwarding predictor. Specifically, a simple structure predicts whether a load instruction will obtain its corresponding data via forwarding from the load-store structure -thus avoiding the data cache access - or if it will be provided by the data cache. This mechanism manages to reduce the data cache energy consumption by an average of 21.5% with a negligible performance penalty of less than 0.1%. Furthermore, in this paper we focus on the cache static energy consumption too by disabling a portin of sets of the L2 associative cache. Overall, when merging both proposals, the combined L1 and L2 total energy consumption is reduced by an average of 29.2% with a performance penalty of just 0.25%. Keywords: Energy consumption; filtering; forwarding predictor; cache hierarchy
Resumo:
Among those damage identification methods, the Wavelet Packet Energy Curvature Difference (WPECD) Method is an effective one. However, most of the existing methods rely on numerical simulation and are unverified via experiment, and very few of them have been applied to practice. In this paper, the validity of WPECD in structural damage identification is verified by a numerical example. A damage simulation experiment is taken on a real replaced girder at the Ziya River New Bridge in Cangzhou. Two damage cases are applied and the acceleration responses at the measuring points are obtained, based on which the damages are identified with the WPECD Method, and the influence of wavelet function and decomposition level is studied. The results show that the WPECD Method can identify structure damage efficiently and can be put into practice.
Resumo:
Fuel poverty can be defined as “the inability to afford adequate warmth in the home" and it is the result of the combination of three items: low household income, housing lack of energy efficiency and high energy bills. Although it affects a growing number of households within the European Union only some countries have an official definition for it. In 2013, the European Parliament claimed the Commission and Estate Members to develop different policies in order to fight household energy vulnerability. The importance of tackling fuel poverty is based on the critical consequences it has for human health living below certain temperatures. In Spain some advances have been made in this field but main existing studies remain at the statistical level and do not deepen the understanding of the problem from the perspective of dwelling indoor habitability conditions. What is more, this concept is yet to be officially defined. This paper presents the evaluation of fuel poverty in a building block of social housing located in the centre of Zaragoza and how this issue determined the strategies implemented in the energy retrofitting intervention project. At a first step, fuel poverty was appraised through the exploration of indoor thermal conditions. The adaptive thermal comfort (UNE-EN 15251:2008) method was used to establish the appropriate indoor temperatures and consequently to determine what can be called 'comfort gap'. Results were collated and verified with energy bills collection and a survey work that gathered data from neighbours. All this permitted pointing out those households more in need. Results from the social analysis combined with the evaluation of the building thermal performance determined the intervention. The renovation project was aimed at the implementation of passive strategies that improve households thermal comfort in order to alleviate households fuel poverty situation. This research is part of the project NewSolutions4OldHousing (LIFE10 ENV/ES/439) cofounded by the European Commission under the LIFE+ Programme.
Resumo:
Los dispositivos móviles modernos disponen cada vez de más funcionalidad debido al rápido avance de las tecnologías de las comunicaciones y computaciones móviles. Sin embargo, la capacidad de la batería no ha experimentado un aumento equivalente. Por ello, la experiencia de usuario en los sistemas móviles modernos se ve muy afectada por la vida de la batería, que es un factor inestable de difícil de control. Para abordar este problema, investigaciones anteriores han propuesto un esquema de gestion del consumo (PM) centrada en la energía y que proporciona una garantía sobre la vida operativa de la batería mediante la gestión de la energía como un recurso de primera clase en el sistema. Como el planificador juega un papel fundamental en la administración del consumo de energía y en la garantía del rendimiento de las aplicaciones, esta tesis explora la optimización de la experiencia de usuario para sistemas móviles con energía limitada desde la perspectiva de un planificador que tiene en cuenta el consumo de energía en un contexto en el que ésta es un recurso de primera clase. En esta tesis se analiza en primer lugar los factores que contribuyen de forma general a la experiencia de usuario en un sistema móvil. Después se determinan los requisitos esenciales que afectan a la experiencia de usuario en la planificación centrada en el consumo de energía, que son el reparto proporcional de la potencia, el cumplimiento de las restricciones temporales, y cuando sea necesario, el compromiso entre la cuota de potencia y las restricciones temporales. Para cumplir con los requisitos, el algoritmo clásico de fair queueing y su modelo de referencia se extienden desde los dominios de las comunicaciones y ancho de banda de CPU hacia el dominio de la energía, y en base a ésto, se propone el algoritmo energy-based fair queueing (EFQ) para proporcionar una planificación basada en la energía. El algoritmo EFQ está diseñado para compartir la potencia consumida entre las tareas mediante su planificación en función de la energía consumida y de la cuota reservada. La cuota de consumo de cada tarea con restricciones temporales está protegida frente a diversos cambios que puedan ocurrir en el sistema. Además, para dar mejor soporte a las tareas en tiempo real y multimedia, se propone un mecanismo para combinar con el algoritmo EFQ para dar preferencia en la planificación durante breves intervalos de tiempo a las tareas más urgentes con restricciones temporales.Las propiedades del algoritmo EFQ se evaluan a través del modelado de alto nivel y la simulación. Los resultados de las simulaciones indican que los requisitos esenciales de la planificación centrada en la energía pueden lograrse. El algoritmo EFQ se implementa más tarde en el kernel de Linux. Para evaluar las propiedades del planificador EFQ basado en Linux, se desarrolló un banco de pruebas experimental basado en una sitema empotrado, un programa de banco de pruebas multihilo, y un conjunto de pruebas de código abierto. A través de experimentos específicamente diseñados, esta tesis verifica primero las propiedades de EFQ en la gestión de la cuota de consumo de potencia y la planificación en tiempo real y, a continuación, explora los beneficios potenciales de emplear la planificación EFQ en la optimización de la experiencia de usuario para sistemas móviles con energía limitada. Los resultados experimentales sobre la gestión de la cuota de energía muestran que EFQ es más eficaz que el planificador de Linux-CFS en la gestión de energía, logrando un reparto proporcional de la energía del sistema independientemente de en qué dispositivo se consume la energía. Los resultados experimentales en la planificación en tiempo real demuestran que EFQ puede lograr de forma eficaz, flexible y robusta el cumplimiento de las restricciones temporales aunque se dé el caso de aumento del el número de tareas o del error en la estimación de energía. Por último, un análisis comparativo de los resultados experimentales sobre la optimización de la experiencia del usuario demuestra que, primero, EFQ es más eficaz y flexible que los algoritmos tradicionales de planificación del procesador, como el que se encuentra por defecto en el planificador de Linux y, segundo, que proporciona la posibilidad de optimizar y preservar la experiencia de usuario para los sistemas móviles con energía limitada. Abstract Modern mobiledevices have been becoming increasingly powerful in functionality and entertainment as the next-generation mobile computing and communication technologies are rapidly advanced. However, the battery capacity has not experienced anequivalent increase. The user experience of modern mobile systems is therefore greatly affected by the battery lifetime,which is an unstable factor that is hard to control. To address this problem, previous works proposed energy-centric power management (PM) schemes to provide strong guarantee on the battery lifetime by globally managing energy as the first-class resource in the system. As the processor scheduler plays a pivotal role in power management and application performance guarantee, this thesis explores the user experience optimization of energy-limited mobile systemsfrom the perspective of energy-centric processor scheduling in an energy-centric context. This thesis first analyzes the general contributing factors of the mobile system user experience.Then itdetermines the essential requirements on the energy-centric processor scheduling for user experience optimization, which are proportional power sharing, time-constraint compliance, and when necessary, a tradeoff between the power share and the time-constraint compliance. To meet the requirements, the classical fair queuing algorithm and its reference model are extended from the network and CPU bandwidth sharing domain to the energy sharing domain, and based on that, the energy-based fair queuing (EFQ) algorithm is proposed for performing energy-centric processor scheduling. The EFQ algorithm is designed to provide proportional power shares to tasks by scheduling the tasks based on their energy consumption and weights. The power share of each time-sensitive task is protected upon the change of the scheduling environment to guarantee a stable performance, and any instantaneous power share that is overly allocated to one time-sensitive task can be fairly re-allocated to the other tasks. In addition, to better support real-time and multimedia scheduling, certain real-time friendly mechanism is combined into the EFQ algorithm to give time-limited scheduling preference to the time-sensitive tasks. Through high-level modelling and simulation, the properties of the EFQ algorithm are evaluated. The simulation results indicate that the essential requirements of energy-centric processor scheduling can be achieved. The EFQ algorithm is later implemented in the Linux kernel. To assess the properties of the Linux-based EFQ scheduler, an experimental test-bench based on an embedded platform, a multithreading test-bench program, and an open-source benchmark suite is developed. Through specifically-designed experiments, this thesis first verifies the properties of EFQ in power share management and real-time scheduling, and then, explores the potential benefits of employing EFQ scheduling in the user experience optimization for energy-limited mobile systems. Experimental results on power share management show that EFQ is more effective than the Linux-CFS scheduler in managing power shares and it can achieve a proportional sharing of the system power regardless of on which device the energy is spent. Experimental results on real-time scheduling demonstrate that EFQ can achieve effective, flexible and robust time-constraint compliance upon the increase of energy estimation error and task number. Finally, a comparative analysis of the experimental results on user experience optimization demonstrates that EFQ is more effective and flexible than traditional processor scheduling algorithms, such as those of the default Linux scheduler, in optimizing and preserving the user experience of energy-limited mobile systems.
Resumo:
In recent years, the increasing sophistication of embedded multimedia systems and wireless communication technologies has promoted a widespread utilization of video streaming applications. It has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week watching online video through social media, business websites, and video streaming sites. Video applications have already been blended into people daily life. Traditionally, video streaming research has focused on performance improvement, namely throughput increase and response time reduction. However, most mobile devices are battery-powered, a technology that grows at a much slower pace than either multimedia or hardware developments. Since battery developments cannot satisfy expanding power demand of mobile devices, research interests on video applications technology has attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery energy budget becomes a major research challenge. In addition, next generation video standards impel to diversification and personalization. Therefore, it is desirable to have mechanisms to implement energy optimizations with greater flexibility and scalability. In this context, the main goal of this dissertation is to find an energy management and optimization mechanism to reduce the energy consumption of video decoders based on the idea of functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off between energy consumption and video quality. Functional-oriented reconfiguration takes advantage of the similarities among standards to build video decoders reconnecting existing functional units. If a feedback channel from the decoder to the encoder is available, the former can signal the latter changes in either the encoding parameters or the encoding algorithms for energy-saving adaption. The proposed energy optimization and management mechanism is carried out at the decoder end. This mechanism consists of an energy-aware manager, implemented as an additional block of the reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback channel connected to the encoder end. The energy-aware manager checks the battery level, selects the new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth noting that the analysis of the energy consumption is fundamental for the success of the energy management and optimization mechanism. In this thesis, an energy estimation method driven by platform event monitoring is proposed. In addition, an event filter is suggested to automate the selection of the most appropriate events that affect the energy consumption. At last, a detailed study on the influence of the training data on the model accuracy is presented. The modeling methodology of the energy estimator has been evaluated on different underlying platforms, single-core and multi-core, with different characteristics of workload. All the results show a good accuracy and low on-line computation overhead. The required modifications on the reconfiguration engine to implement the energy-aware manager have been assessed under different scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two different use-cases.
Resumo:
The influence of source and level of inclusion of raw glycerin (GLYC) in the diet on growth performance, digestive traits, total tract apparent retention (TTAR), and apparent ileal digestibility of nutrients was studied in broilers from 1 to 21 d of age. There was a control diet based on corn and soybean meal and 8 additional diets that formed a 2 × 4 factorial with 2 sources of GLYC and 4 levels of inclusion (2.5, 5.0, 7.5, and 10%). The GLYC used were obtained from the same original batch of soy oil that was dried under different processing conditions and contained 87.5 or 81.6% glycerol, respectively. Type of processing of the GLYC did not affect any of the variables studied except DM and organic matter retention (P < 0.05) that was higher for the 87.5% glycerol diet. From d 1 to 21, feed conversion ratio (FCR) improved linearly (L, P ≤ 0.01) as the GLYC content of the diet increased, but ADG was not affected. On d 21, the relative weight (% BW) of the liver and the digestive tract increased (L, P < 0.01) as the level of GLYC in the diet increased, but lipid concentration in the liver was not affected. The TTAR of DM and organic matter increased quadratically (Q, P < 0.05) and the AMEn content of the diet increased linearly (L, P < 0.01) with increases in dietary GLYC. Also, the apparent ileal digestibility of DM (L, P < 0.05; Q, P = 0.07) and gross energy (L, P < 0.01) increased as the GLYC content of the diet increased. It is concluded that raw GLYC from the biodiesel industry can be used efficiently, up to 10% of the diet, as a source of energy for broilers from 1 to 21 d of age and that the energy content of well-processed raw GLYC depends primarily on its glycerol content.
Resumo:
We have analyzed the influence of the actual height of Bolund island above water level on different full-scale statistics of the velocity field over the peninsula. Our analysis is focused on the database of 10-minute statistics provided by Risø-DTU for the Bolund Blind Experiment. We have considered 10-minut.e periods with near-neutral atmospheric conditions, mean wind speed values in the interval [5,20] m/s, and westerly wind directions. As expected, statistics such as speed-up, normalized increase of turbulent kinetic energy and probability of recirculating flow show a large dependence on the emerged height of the island for the locations close to the escarpment. For the published ensemble mean values of speed-up and normalized increase of turbulent kinetic energy in these locations, we propose that some ammount of uncertainty could be explained as a deterministic dependence of the flow field statistics upon the actual height of the Bolund island above the sea level
Resumo:
The city of Lorca (Spain) was hit on May 11th, 2011, by two consecutive earth-quakes of magnitudes 4.6 and 5.2 Mw, causing casualties and important damage in buildings. Many of the damaged structures were reinforced concrete frames with wide beams. This study quantifies the expected level of damage on this structural type in the case of the Lorca earth-quake by means of a seismic index Iv that compares the energy input by the earthquake with the energy absorption/dissipation capacity of the structure. The prototype frames investigated represent structures designed in two time periods (1994–2002 and 2003–2008), in which the applicable codes were different. The influence of the masonry infill walls and the proneness of the frames to concentrate damage in a given story were further investigated through nonlinear dynamic response analyses. It is found that (1) the seismic index method predicts levels of damage that range from moderate/severe to complete collapse; this prediction is consistent with the observed damage; (2) the presence of masonry infill walls makes the structure very prone to damage concentration and reduces the overall seismic capacity of the building; and (3) a proper hierarchy of strength between beams and columns that guarantees the formation of a strong column-weak beam mechanism (as prescribed by seismic codes), as well as the adoption of counter-measures to avoid the negative interaction between non-structural infill walls and the main frame, would have reduced the level of damage from Iv=1 (collapse) to about Iv=0.5 (moderate/severe damage)
Resumo:
This paper introduces a road map for ICTs (Information and communication technologies) supporting planning, operation and management of energy systems in smart cities. The road map summarises different elements that form energy systems in cities and proposes research and technical development (RTD) and innovation activities for the development and innovation of ICTs for holistic design, planning and operation of energy systems. In addition, synergies with other ICT systems for smart cities are considered. There are four main target groups for the road map: 1) citizen; 2) building sector; 3) energy sector; and 4) municipality level. As an example for enabling active participation of citizens, the road map proposes how ICT can enable citizens? involvement among others into building design. The building sector roadmap proposes how ICTs can support the planning of buildings and renovations in the future, as well as how to manage building energy systems. The energy sector road map focuses on city?s energy systems and their planning and management, including e.g. demand side management, management of different district level energy systems, energy performance validation and management, energy data models, and smarter use of open energy data. Moreover, the municipality level road map proposes among others ICTs for better integration of city systems and city planning enabling maximised energy efficiency. In addition, one road map section suggests development needs related to open energy data, including among others the use of energy data and the development and harmonisation of energy data models. The road map has been assembled in the READY4SmartCities project (funded by EU 7th Framework Programme), which focuses on the energy system at the city level, consisting of centralised energy systems and connections to the national level energy grids, as well as interconnections to the neighbourhood and building level energy systems.