845 resultados para valve replacement repair
Resumo:
Discrimination of different species in various target scopes within a single sensing platform can provide many advantages such as simplicity, rapidness, and cost effectiveness. Here we design a three-input colorimetric logic gate based on the aggregation and anti-aggregation of gold nanoparticles (Au NPs) for the sensing of melamine, cysteine, and Hg2+. The concept takes advantages of the highly specific coordination and ligand replacement reactions between melamine, cysteine, Hg2+, and Au NPs. Different outputs are obtained with the combinational inputs in the logic gates, which can serve as a reference to discriminate different analytes within a single sensing platform. Furthermore, besides the intrinsic sensitivity and selectivity of Au NPs to melamine-like compounds, the “INH” gates of melamine/cysteine and melamine/Hg2+ in this logic system can be employed for sensitive and selective detections of cysteine and Hg2+, respectively.
Resumo:
Introduction: In this cohort study, we explored the relationship between fluid balance, intradialytic hypotension and outcomes in critically ill patients with acute kidney injury (AKI) who received renal replacement therapy (RRT).
Methods: We analysed prospectively collected registry data on patients older than 16 years who received RRT for at least two days in an intensive care unit at two university-affiliated hospitals. We used multivariable logistic regression to determine the relationship between mean daily fluid balance and intradialytic hypotension, both over seven days following RRT initiation, and the outcomes of hospital mortality and RRT dependence in survivors.
Results: In total, 492 patients were included (299 male (60.8%), mean (standard deviation (SD)) age 62.9 (16.3) years); 251 (51.0%) died in hospital. Independent risk factors for mortality were mean daily fluid balance (odds ratio (OR) 1.36 per 1000 mL positive (95% confidence interval (CI) 1.18 to 1.57), intradialytic hypotension (OR 1.14 per 10% increase in days with intradialytic hypotension (95% CI 1.06 to 1.23)), age (OR 1.15 per five-year increase (95% CI 1.07 to 1.25)), maximum sequential organ failure assessment score on days 1 to 7 (OR 1.21 (95% CI 1.13 to 1.29)), and Charlson comorbidity index (OR 1.28 (95% CI 1.14 to 1.44)); higher baseline creatinine (OR 0.98 per 10 mu mol/L (95% CI 0.97 to 0.996)) was associated with lower risk of death. Of 241 hospital survivors, 61 (25.3%) were RRT dependent at discharge. The only independent risk factor for RRT dependence was pre-existing heart failure (OR 3.13 (95% CI 1.46 to 6.74)). Neither mean daily fluid balance nor intradialytic hypotension was associated with RRT dependence in survivors. Associations between these exposures and mortality were similar in sensitivity analyses accounting for immortal time bias and dichotomising mean daily fluid balance as positive or negative. In the subgroup of patients with data on pre-RRT fluid balance, fluid overload at RRT initiation did not modify the association of mean daily fluid balance with mortality.
Conclusions: In this cohort of patients with AKI requiring RRT, a more positive mean daily fluid balance and intradialytic hypotension were associated with hospital mortality but not with RRT dependence at hospital discharge in survivors.
Resumo:
BACKGROUND: Open AAA repair is associated with ischaemia-reperfusion injury where systemic inflammation and endothelial dysfunction can lead to multiple organ injury including acute lung injury. Oxidative stress plays a role that may be inhibited by ascorbic acid.
METHODS: A double blind, allocation concealed, randomized placebo-controlled trial was performed to test the hypothesis that a single bolus dose (2g) of intra-operative parenteral ascorbic acid would attenuate biomarkers of ischaemia-reperfusion injury in patients undergoing elective open AAA repair.
RESULTS: Thirty one patients completed the study; 18 received placebo and 13 ascorbic acid. Groups were comparable demographically. Open AAA repair caused an increase in urinary Albumin:Creatinine Ratio (ACR) as well as plasma IL-6 and IL-8. There was a decrease in exhaled breath pH and oxygenation. Lipid hydroperoxides were significantly higher in the ascorbic acid group following open AAA repair. There were no other differences between the ascorbic acid or placebo groups up to 4 hours after removal of the aortic clamping.
CONCLUSIONS: Open AAA repair caused an increase in markers of systemic endothelial damage and systemic inflammation. Administration of 2g parenteral ascorbic acid did not attenuate this response and with higher levels of lipid hydroperoxides post-operatively a pro-oxidant effect could not be excluded.
TRIAL REGISTRATION: ISRCTN27369400.
Resumo:
Cells experience damage from exogenous and endogenous sources that endanger genome stability. Several cellular pathways have evolved to detect DNA damage and mediate its repair. Although many proteins have been implicated in these processes, only recent studies have revealed how they operate in the context of high-ordered chromatin structure. Here, we identify the nuclear oncogene SET (I2PP2A) as a modulator of DNA damage response (DDR) and repair in chromatin surrounding double-strand breaks (DSBs). We demonstrate that depletion of SET increases DDR and survival in the presence of radiomimetic drugs, while overexpression of SET impairs DDR and homologous recombination (HR)-mediated DNA repair. SET interacts with the Kruppel-associated box (KRAB)-associated co-repressor KAP1, and its overexpression results in the sustained retention of KAP1 and Heterochromatin protein 1 (HP1) on chromatin. Our results are consistent with a model in which SET-mediated chromatin compaction triggers an inhibition of DNA end resection and HR.
Resumo:
It is widely accepted that silicon-substituted materials enhance bone formation, yet the mechanism by which this occurs is poorly understood. This work investigates the potential of using diatom frustules to answer on fundamental questions surrounding the role of silica in bone healing. Biosilica with frustules 20m were isolated from Cyclotella meneghiniana a unicellular microalgae that was sourced from the Mississippi River, USA. Silanisation chemistry was used to modify the surface of C. meneghiniana with amine (–NH2) and thiol (–SH) terminated silanes. Untreated frustules and both functionalised groups were soaked in culture medium for 24hrs. Following the culture period, frustules were separated from the conditioned medium by centrifugation and both were tested separately in vitro for cytotoxicity using murine-monocyte macrophage (J774) cell line. Cytotoxicity was measured using LDH release to measure damage to cell membrane, MTS to measure cell viability and live-dead staining. The expression and release of pro-inflammatory cytokines (IL-6 and TNF) were measured using ELISA. Our results found that diatom frustules and those functionalised with amino groups showed no cytotoxicity or elevated cytokine release. Diatom frustules functionalised with thiol groups showed higher levels of cytotoxicity. Diatom frustules and those functionalised with amino groups were taken forward to an in vivo mouse toxicity model, whereby the immunological response, organ toxicity and route of metabolism/excretion of silica were investigated. Histological results showed no organ toxicity in any of the groups relative to control. Analysis of blood Si levels suggests that modified frustules are metabolised quicker than functionalised frustules, suggesting that physiochemical attributes influence their biodistribution. Our results show that diatom frustules are non cytotoxic and are promising materials to better understand the role of silica in bone healing.
Resumo:
The DNA mismatch repair (MMR) pathway detects and repairs DNA replication errors. While DNA MMR-proficiency is known to play a key role in the sensitivity to a number of DNA damaging agents, its role in the cytotoxicity of ionizing radiation (IR) is less well characterized. Available literature to date is conflicting regarding the influence of MMR status on radiosensitivity, and this has arisen as a subject of controversy in the field. The aim of this paper is to provide the first comprehensive overview of the experimental data linking MMR proteins and the DNA damage response to IR. A PubMed search was conducted using the key words "DNA mismatch repair" and "ionizing radiation". Relevant articles and their references were reviewed for their association between DNA MMR and IR. Recent data suggest that radiation dose and the type of DNA damage induced may dictate the involvement of the MMR system in the cellular response to IR. In particular, the literature supports a role for the MMR system in DNA damage recognition, cell cycle arrest, DNA repair and apoptosis. In this review we discuss our current understanding of the impact of MMR status on the cellular response to radiation in mammalian cells gained from past and present studies and attempt to provide an explanation for how MMR may determine the response to radiation.
Resumo:
The molecular basis for the progression of breast and prostate cancer from hormone dependent to hormone independent disease remains a critical issue in the management of these two cancers. The DNA mismatch repair system is integral to the maintenance of genomic stability and suppression of tumorigenesis. No firm consensus exists regarding the implications of mismatch repair (MMR) deficiencies in the development of breast or prostate cancer. However, recent studies have reported an association between mismatch repair deficiency and loss of specific hormone receptors, inferring a potential role for mismatch repair deficiency in this transition. An updated review of the experimental data supporting or contradicting the involvement of MMR defects in the development and progression of breast and prostate cancer will be provided with particular emphasis on their implications in the transition to hormone independence.
Resumo:
Low-dose hyper-radiosensitivity (HRS) is the phenomenon whereby cells exposed to radiation doses of less than approximately 0.5 Gy exhibit increased cell killing relative to that predicted from back-extrapolating high-dose survival data using a linear-quadratic model. While the exact mechanism remains to be elucidated, the involvement of several molecular repair pathways has been documented. These processes in turn are also associated with the response of cells to O6-methylguanine (O6MeG) lesions. We propose a model in which the level of low-dose cell killing is determined by the efficiency of both pre-replicative repair by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT) and post-replicative repair by the DNA mismatch repair (MMR) system. We therefore hypothesized that the response of cells to low doses of radiation is dependent on the expression status of MGMT and MMR proteins. MMR (MSH2, MSH6, MLH1, PMS1, PMS2) and MGMT protein expression signatures were determined in a panel of normal (PWR1E, RWPE1) and malignant (22RV1, DU145, PC3) prostate cell lines and correlated with clonogenic survival and cell cycle analysis. PC3 and RWPE1 cells (HRS positive) were associated with MGMT and MMR proficiency, whereas HRS negative cell lines lacked expression of at least one (MGMT or MMR) protein. MGMT inactivation had no significant effect on cell survival. These results indicate a possible role for MMR-dependent processing of damage produced by low doses of radiation.
Resumo:
Cytogenetic analysis in myeloma reveals marked chromosomal instability. Both widespread genomic alterations and evidence of aberrant class switch recombination, the physiological process that regulates maturation of the antibody response, implicate the DNA repair pathway in disease pathogenesis. We therefore assessed 27 SNPs in three genes (XRCC3, XRCC4 and XRCC5) central to DNA repair in patients with myeloma and controls from the EpiLymph study and from an Irish hospital registry (n = 306 cases, 263 controls). For the haplotype-tagging SNP (htSNP) rs963248 in XRCC4, Allele A was significantly more frequent in cases than in controls (86.4 versus 80.8%; odds ratio 1.51; 95% confidence interval 1.10-2.08; P = 0.0133), as was the AA genotype (74 versus 65%) (P = 0.026). Haplotype analysis was performed using Unphased for rs963248 in combination with additional SNPs in XRCC4. The strongest evidence of association came from the A-T haplotype from rs963248-rs2891980 (P = 0.008). For XRCC5, the genotype GG from rs1051685 was detected in 10 cases from different national populations but in only one control (P = 0.015). This SNP is located in the 3'-UTR of XRCC5. Overall, these data provide support for the hypothesis that common variation in the genes encoding DNA repair proteins contributes to susceptibility to myeloma.
Resumo:
Objectives: The primary aim of this study was to investigate partially dentate elders’ willingness-to-pay (WTP) for two different tooth replacement strategies: using Removable Partial Dentures (RPDs) and, functionally orientated treatment (SDA). The secondary aim was to measure the same patient group’s WTP for dental implants. Methods: Patients who had completed a previous RCT comparing two tooth replacement strategies (RPDs and SDA) were recruited. 59 patients were asked to indicate their WTP for treatment to replace missing teeth in a number of hypothetical scenarios using the payment card method of contingency evaluation coupled to different costs. Data were collected on patients’ social class, longest held occupation, income levels and social circumstances. Results: The median age for the patient sample was 72.0 years (IQR: 71-75 years). Patients who had previously been provided with RPDs indicated that their WTP for this treatment strategy was significantly higher than those patients who had received SDA treatment (Mann-Whitney U Test: p<0.001). This group were also WTP a higher price for SDA treatment than those patients who had previously been treated according to this modality (Mann-Whitney U Test: p=0.005). The results indicated that patients’ age was not correlated with WTP but both social class and current income levels were significantly correlated (Spearman’s rank correlation: p<0.05). Patients in both treatment groups exhibited llittle WTP for dental implant treatment with a median price recorded which was lower than either RPD or SDA treatment. Conclusions: Amongst this patient cohort previous treatment experience had a strong influence on WTP as did social class and current income levels. The patients’ WTP indicated that they did not value dental implants over simpler forms of tooth replacement such as RPDs or a SDA approach.
Resumo:
Oxaliplatin-based chemotherapy is the standard of care in patients with high-risk stage II and stage III colorectal cancer as well as in patients with advanced disease. Unfortunately, a large proportion of patients offered oxaliplatin fail to benefit from it. In the era of personalized treatment, there are strong efforts to identify biomarkers that will predict efficacy to oxaliplatin-based treatments. Excision repair cross-complementation group 1 (ERCC1) is a key element in the nucleotide excision repair (NER) pathway, which is responsible for repairing DNA adducts induced by platinum compounds. ERCC1 has recently been shown to be closely associated with outcome in patients with non-small-cell lung cancer (NSCLC): both high ERCC1 protein and gene expression are associated with resistance to cisplatin-based chemotherapy and better outcome without treatment. Therefore, ERCC1 has the potential to be used as a strong candidate biomarker, both predictive and prognostic, for colorectal cancer. This review will focus on the preclinical and clinical evidences supporting ERCC1 as a major molecule in oxaliplatin resistance. In addition, the important technologies used to assess ERCC1 gene and protein expression will be highlighted.
Resumo:
BACKGROUND: This study investigated the effect of socioeconomic deprivation on preoperative disease and outcome following unicompartmental knee replacement (UKR).
METHODS: 307 Oxford UKRs implanted between 2008 and 2013 under the care of one surgeon using the same surgical technique were analysed. Deprivation was quantified using the Northern Ireland Multiple Deprivation Measure. Preoperative disease severity and postoperative outcome were measured using the Oxford Knee Score (OKS).
RESULTS: There was no difference in preoperative OKS between deprivation groups. Preoperative knee range of motion (ROM) was significantly reduced in more deprived patients with 10° less ROM than least deprived patients. Postoperatively there was no difference in OKS improvement between deprivation groups (p=0.46), with improvements of 19.5 and 21.0 units in the most and least deprived groups respectively. There was no significant association between deprivation and OKS improvement on unadjusted or adjusted analysis. Preoperative OKS, Short Form 12 mental component score and length of stay were significant independent predictors of OKS improvement. A significantly lower proportion of the most deprived group (15%) reported being able to walk an unlimited distance compared to the least deprived group (41%) one year postoperatively.
CONCLUSION: More deprived patients can achieve similar improvements in OKS to less deprived patients following UKR.
LEVEL OF EVIDENCE: 2b - retrospective cohort study of prognosis.