955 resultados para two-dimensional field theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slantwise convective available potential energy (SCAPE) is a measure of the degree to which the atmosphere is unstable to conditional symmetric instability (CSI). It has, until now, been defined by parcel theory in which the atmosphere is assumed to be nonevolving and balanced, that is, two-dimensional. When applying this two-dimensional theory to three-dimensional evolving flows, these assumptions can be interpreted as an implicit assumption that a timescale separation exists between a relatively rapid timescale for slantwise ascent and a slower timescale for the development of the system. An approximate extension of parcel theory to three dimensions is derived and it is shown that calculations of SCAPE based on the assumption of relatively rapid slantwise ascent can be qualitatively in error. For a case study example of a developing extratropical cyclone, SCAPE calculated along trajectories determined without assuming the existence of the timescale separation show large SCAPE values for parcels ascending from the warm sector and along the warm front. These parcels ascend into the cloud head within which there is some evidence consistent with the release of CSI from observational and model cross sections. This region of high SCAPE was not found for calculations along the relatively rapidly ascending trajectories determined by assuming the existence of the timescale separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies show that the beta-turn structure of tetrapeptide I, Boc-Gly-Phe-Aib-Leu-OMe (Aib: alpha-amino isobutyric acid) self-assembles to a supramolecular helix through intermolecular hydrogen bonding along the crystallographic a axis. By contrast the beta-turn structure of an isomeric tetrapeptide II, Boc-Gly-Leu-Aib-Phe-OMe self-assembles to a supramolecular beta-sheet-like structure via a two-dimensional (a, b axis) intermolecular hydrogen bonding network and pi-pi interactions. FT-IR studies of the peptides revealed that both of them form intermolecularly hydrogen bonded supramolecular structures in the solid state. Field emission scanning electron micrographs (FE-SEM) of the dried fibrous materials of the peptides show different morphologies, non-twisted filaments in case of peptide I and non-twisted filaments and ribbon-like structures in case of peptide II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been worked out in two dimensions, their application to a horizontally homogeneous background flow in three dimensions fails because of a degeneracy created by the absence of a background potential vorticity gradient. Earlier three-dimensional results based on linear WKB theory considered only Doppler-shifted gravity waves, not waves in a stratified shear flow. Consideration of a background flow depending only on altitude is motivated by the parameterization of subgrid-scales in climate models where there is an imposed separation of horizontal length and time scales, but vertical coupling within each column. Here we show how this degeneracy can be overcome and wave-activity conservation laws derived for three-dimensional disturbances to a horizontally homogeneous background flow. Explicit expressions for pseudoenergy and pseudomomentum in the anelastic and Boussinesq models are derived, and it is shown how the previously derived relations for the two-dimensional problem can be treated as a limiting case of the three-dimensional problem. The results also generalize earlier three-dimensional results in that there is no slowly varying WKB-type requirement on the background flow, and the results are extendable to finite amplitude. The relationship A E =cA P between pseudoenergy A E and pseudomomentum A P, where c is the horizontal phase speed in the direction of symmetry associated with A P, has important applications to gravity-wave parameterization and provides a generalized statement of the first Eliassen–Palm theorem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known anatomical constraints and predict mean firing rates and power spectra typically encountered in human subjects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane. Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an outlook on future fits to experimental data is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear spectral transfers of kinetic energy and enstrophy, and stationary-transient interaction, are studied using global FGGE data for January 1979. It is found that the spectral transfers arise primarily from a combination, in roughly equal measure, of pure transient and mixed stationary-transient interactions. The pure transient interactions are associated with a transient eddy field which is approximately locally homogeneous and isotropic, and they appear to be consistently understood within the context of two-dimensional homogeneous turbulence. Theory based on spatial wale separation concepts suggests that the mixed interactions may be understood physically, to a first approximation, as a process of shear-induced spectral transfer of transient enstrophy along lines of constant zonal wavenumber. This essentially conservative enstrophy transfer generally involves highly nonlocal stationary-transient energy conversions. The observational analysis demonstrates that the shear-induced transient enstrophy transfer is mainly associated with intermediate-scale (zonal wavenumber m > 3) transients and is primarily to smaller (meridional) scales, so that the transient flow acts as a source of stationary energy. In quantitative terms, this transient-eddy rectification corresponds to a forcing timescale in the stationary energy budget which is of the same order of magnitude as most estimates of the damping timescale in simple stationary-wave models (5 to 15 days). Moreover, the nonlinear interactions involved are highly nonlocal and cover a wide range of transient scales of motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer simulation method has been used to study the three-dimensional structural formation and transition of eleetromagnetorheological (EMR) suspensions under compatible electric and magnetic fields. When the fields are applied simultaneously and perpendicularly to each other, the particles rapidly arrange into single layer structures parallel to both fields. In each layer, there is a two-dimensional hexagonal lattice. The single layers then combine together to form thicker sheetlike structures. With the help of the thermal fluctuations, the thicker structures relax into three-dimensional close-packed structures, which may be face-centered cubic (fcc), hexagonal close-packed (hup) lattices, or, more probably, the mixture of them, depending on the initial configurations and the thermal fluctuations. On the other hand, if the electric field is applied first to induce the body-centered tetragonal (bct) columns in the system, and then the magnetic field is applied in the perpendicular direction, the bet to fee structure transition is observed in a very short time. Following that, the structure keeps on evolving due to the demagnetization effect and finally forms close-packed structures with fee and hcp lattice character. The simulation results are in agreement with the theoretical and experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic field line structure in a tokamak can be obtained by direct numerical integration of the field line equations. However, this is a lengthy procedure and the analysis of the solution may be very time-consuming. Otherwise we can use simple two-dimensional, area-preserving maps, obtained either by approximations of the magnetic field line equations, or from dynamical considerations. These maps can be quickly iterated, furnishing solutions that mirror the ones obtained from direct numerical integration, and which are useful when long-term studies of field line behavior are necessary (e.g. in diffusion calculations). In this work we focus on a set of simple tokamak maps for which these advantages are specially pronounced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper we report on the experimental electron sheet density vs. magnetic field diagram for the magnetoresistance R(xx) of a two-dimensional electron system (2DES) with two occupied subbands. For magnetic fields above 9T, we found fractional quantum Hall levels centered around the filing factor v = 3/2 in both the two occupied electric subbands. We focused specially on the fractional levels of the second subband, whose experimental values of the magnetic field B of their minima do not obey a periodicity law in 1/|B-B(c)|, where B(c) is the critical field at the filling factor v = 3/2, and we explain this fact entirely in the framework of the composite fermions theory. We use a simple theoretical model to give a possible explanation for the fact. Copyright (c) EPLA, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Moyal plane and propose to make the noncommutativity parameter Theta(mu nu) bifermionic, i.e. composed of two fermionic (Grassmann odd) parameters. The Moyal product then contains a finite number of derivatives, which avoid the difficulties of the standard approach. As an example, we construct a two-dimensional noncommutative field theory model based on the Moyal product with a bifermionic parameter and show that it has a locally conserved energy-momentum tensor. The model has no problem with the canonical quantization and appears to be renormalizable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sigma model describing the dynamics of the superstring in the AdS(5) x S(5) background can be constructed using the coset PSU(2, 2 vertical bar 4)/SO(4, 1) x SO(5). A basic set of operators in this two dimensional conformal field theory is composed by the left invariant currents. Since these currents are not (anti) holomorphic, their OPE`s is not determined by symmetry principles and its computation should be performed perturbatively. Using the pure spinor sigma model for this background, we compute the one-loop correction to these OPE`s. We also compute the OPE`s of the left invariant currents with the energy momentum tensor at tree level and one loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.