946 resultados para tumor cells and cell lines
Resumo:
Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacological inhibition of such glial reactions reduces the manifestation of pain in animal models. This complex interplay between glia and neurons relies on various mechanisms depending both on glial cell types considered (astrocytes, microglia, satellite cells, or Schwann cells), the anatomical location of the regulatory process (peripheral nerve, spinal cord, or brain), and the nature of the chronic pain paradigm. Intracellularly, recent advances have pointed to the activation of specific cascades, such as mitogen-associated protein kinases (MAPKs) in the underlying processes behind glial activation. In addition, given the large number of functions accomplished by glial cells, various mechanisms might sensitize nociceptive neurons including a release of pronociceptive cytokines and neurotrophins or changes in neurotransmitter-scavenging capacity. The authors review the conceptual advances made in the recent years about the implication of central and peripheral glia in animal models of chronic pain and discuss the possibility to translate it into human therapies in the future.
Resumo:
PURPOSE: To provide a mechanistic link between mutations in PRPF31, and essential and ubiquitously expressed gene, and retinitis pigmentosa, a disorder restricted to the eye. METHODS: We investigated the existence of retina-specific PRPF31 isoforms and the expression of this gene in human retina and other tissues, as well as in cultured human cell lines. PRPF31 transcripts were examined by RT-PCR, quantitative PCR, cloning and sequencing. RESULTS: Database searching revealed the presence of a retina-specific PRPF31 isoform in mouse. However, this isoform could not be experimentally identified in transcripts from human retina or from a human whole eye. Nevertheless, four different PRPF31 isoforms, that were common to all analyzed tissues and cell lines, were isolated. Three of these harbored the full-length PRPF31 coding sequence, whereas the fourth was very short and probably non-coding. The amount of PRPF31 mRNA was previously found to be lower in patients with mutations in this gene than in healthy individuals, making it likely that retinal cells are more sensitive to variation in PRPF31 expression. However, quantitative PCR experiments revealed that PRPF31 mRNA levels in human retina were comparable to those detected in other tissues. CONCLUSIONS: Our results show that the retina-restricted phenotype caused by PRPF31 mutations cannot be explained by the presence of tissue-specific isoforms, or by differential expression of PRPF31 in the retina. As a consequence, the etiology of PRPF31-associated retinitis pigmentosa likely relies on other, probably more subtle molecular mechanisms.
Resumo:
The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells andprovided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold greattherapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect,somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.
Resumo:
The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.
Resumo:
During spermatogenesis, different genes are expressed in a strictly coordinated fashion providing an excellent model to study cell differentiation. Recent identification of testis specific genes and the development of green fluorescence protein (GFP) transgene technology and an in vivo system for studying the differentiation of transplanted male germ cells in infertile testis has opened new possibilities for studying the male germ cell differentiation at molecular level. We have employed these techniques in combination with transillumination based stage recognition (Parvinen and Vanha-Perttula, 1972) and squash preparation techniques (Parvinen and Hecht, 1981) to study the regulation of male germ cell differentiation. By using transgenic mice expressing enhanced-(E)GFP as a marker we have studied the expression and hormonal regulation of beta-actin and acrosin proteins in the developmentally different living male germ cells. Beta-actin was demonstrated in all male germ cells, whereas acrosin was expressed only in late meiotic and in postmeiotic cells. Follicle stimulating hormone stimulated b-actin-EGFP expression at stages I-VI and enhanced the formation of microtubules in spermatids and this way reduced the size of the acrosomic system. When EGFP expressing spermatogonial stem cells were transplanted into infertile mouse testis differentiation and the synchronized development of male germ cells could be observed during six months observation time. Each colony developed independently and maintained typical stage-dependent cell associations. Furthermore, if more than two colonies were fused, each of them was adjusted to one stage and synchronized. By studying living spermatids we were able to demonstrate novel functions for Golgi complex and chromatoid body in material sharing between neighbor spermatids. Immunosytochemical analyses revealed a transport of haploid cell specific proteins in spermatids (TRA54 and Shippo1) and through the intercellular bridges (TRA54). Cytoskeleton inhibitor (nocodazole) demonstrated the importance of microtubules in material sharing between spermatids and in preserving the integrity of the chromatoid body. Golgi complex inhibitor, brefeldin A, revealed the great importance of Golgi complex i) in acrosomic system formation ii) TRA54 translation and in iii) granule trafficking between spermatids.
Resumo:
Thymic dendritic cells (DCs) form a discrete subset of bone marrow (BM)-derived cells, the function of which is to mediate negative selection of autoreactive thymocytes. The developmental origin of thymic DCs remains controversial. Although cell transfer studies support a model in which T cells and thymic DCs develop from the same intrathymic pluripotential precursor, it remains possible that these two types of cells develop from independent intrathymic precursors. Notch proteins are cell surface receptors involved in the regulation of cell fate specification. We have recently reported that T cell development in inducible Notch1-deficient mice is severely impaired at an early stage, before the expression of T cell lineage markers. To investigate whether development of thymic DCs also depends on Notch1, we have constructed mixed BM chimeric mice. We report here that thymic DC development from Notch1(-/)- BM precursors is absolutely normal (in terms of absolute number and phenotype) in this competitive situation, despite the absence of Notch1(-/)- T cells. Furthermore, we find that peripheral DCs and Langerhans cells are also not affected by Notch1 deficiency. Our results demonstrate that the development of DCs is totally independent of Notch1 function, and strongly suggest a dissociation between intrathymic T cell and DC precursors.
Resumo:
The aim of the study was to characterize the cell damage mechanisms involved in the pathophysiology of cytotoxicity of polymyxin B in proximal tubular cells (LLC - PK1) and discuss about the nurses interventions to identify at risk patients and consider prevention or treatment of nephrotoxicity acute kidney injury. This is a quantitative experimental in vitro study, in which the cells were exposed to 375μM polymyxin B sulfate concentration. Cell viability was determined by exclusion of fluorescent dyes and morphological method with visualization of apoptotic bodies for fluorescence microscopy. Cells exposed to polymyxin B showed reduced viability, increased number of apoptotic cells and a higher concentration of the enzyme lactate dehydrogenase. The administration of polymyxin B in vitro showed the need for actions to minimize adverse effects such as nephrotoxicity.
Resumo:
Peripheral T-cell lymphomas (PTCLs) are heterogeneous and uncommon malignancies characterized by an aggressive clinical course and a mostly poor outcome with current treatment strategies. Despite novel insights into their pathobiology provided by recent genome-wide molecular studies, several entities remain poorly characterized. In addition to the neoplastic cell population, PTCLs have a microenvironment component, composed of non-tumor cells and stroma, which is quantitatively and qualitatively variable, and which may have an effect on their pathological and clinical features. The best example is provided by angioimmunoblastic T-cell lymphoma (AITL), a designation reflecting the typical vascularization and reactive immunoblastic content of the tumor tissues. In this disease, a complex network of interactions between the lymphoma cells and the microenvironment exists, presumably mediated by the neoplastic T cells with follicular helper T-cell properties. A better understanding of the crosstalk between neoplastic T or NK cells and their microenvironment may have important implications for guiding the development of novel therapies.
Resumo:
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.
Resumo:
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Resumo:
The CD8(+)-T-cell response to Moloney murine leukemia virus (M-MuLV)-associated antigens in C57BL/6 mice is directed against an immunodominant gag-encoded epitope (CCLCLTVFL) presented in the context of H-2D(b) and is restricted primarily to cytotoxic T lymphocytes (CTL) expressing the Valpha3.2 and Vbeta5.2 gene segments. We decided to examine the M-MuLV response in congenic C57BL/6 Vbeta(a) mice which are unable to express the dominant Valpha3.2(+) Vbeta5.2(+) T-cell receptor (TCR) due to a large deletion at the TCR locus that includes the Vbeta5.2 gene segment. Interestingly, M-MuLV-immune C57BL/6 Vbeta(a) mice were still able to reject M-MuLV-infected tumor cells and direct ex vivo analysis of peripheral blood lymphocytes from these immune mice revealed a dramatic increase in CD8(+) cells utilizing the same Valpha3.2 gene segment in association with two different Vbeta segments (Vbeta3 and Vbeta17). Surprisingly, all these CTL recognized the same immunodominant M-MuLV gag epitope. Analysis of the TCR repertoire of individual M-MuLV-immune (C57BL/6 x C57BL/6 Vbeta(a))F(1) mice revealed a clear hierarchy in Vbeta utilization, with a preferential usage of the Vbeta17 gene segment, whereas Vbeta3 and especially Vbeta5.2 were used to much lesser extents. Sequencing of TCRalpha- and -beta-chain junctional regions of CTL clones specific for the M-MuLV gag epitope revealed a diverse repertoire of TCRbeta chains in Vbeta(a) mice and a highly restricted TCRbeta-chain repertoire in Vbeta(b) mice, whereas TCRalpha-chain sequences were highly conserved in both cases. Collectively, our data indicate that the H-2D(b)-restricted M-MuLV gag epitope can be recognized in a hierarchal fashion by different Vbeta domains and that the degree of beta-chain diversity varies according to Vbeta utilization.
Resumo:
Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.
Resumo:
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.
Resumo:
Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.