986 resultados para trap mass-spectrometer
Resumo:
The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5-4 boundary with the chemical composition of the "Youngest Toba Tuff". Time series of the Uk'37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.
Resumo:
Large carbonate mound structures have been discovered in the northern Porcupine Seabight (Northeast Atlantic) at depths between 600 and 1000 m. These mounds are associated with the growth of deep-sea corals Lophelia pertusa and Madrepra oculata. In this study, three sediment cores have been analysed. They are from locations close to Propeller Mound, a 150 m high ridge-like feature covered with a cold-water coral ecosystem at its upper flanks. The investigations are concentrated on grain-size analyses, carbon measurements and on the visual description of the cores and computer tomographic images, to evaluate sediment content and structure. The cores portray the depositional history of the past ~31 kyr BP, mainly controlled by sea-level fluctuations and the climate regime with the advance and retreat of the Irish Ice Sheet onto the Irish Mainland Shelf. A first advance of glaciers is indicated by a turbiditic release slightly older than 31 kyr BP, coherent with Heinrich event 3 deposition. During Late Marine Isotope Stage 3 (MIS 3) and MIS 2 shelf erosion prevailed with abundant gravity flows and turbidity currents. A change from glaciomarine to hemipelagic contourite sedimentation during the onset of the Holocene indicates the establishment of the strong, present-day hydrodynamic regime at intermediate depths. The general decrease in accumulation of sediments with decreasing distance towards Propeller Mound suggests that currents (turbidity currents, gravity flows, bottom currents) had a generally stronger impact on the sediment accumulation at the mound base for the past ~31 kyr BP, respectively.
Resumo:
The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.
Resumo:
An intensive mineralogic and geochemical investigation was conducted on sediments recovered during Ocean Drilling Program Leg 166 from the western Great Bahama Bank at Sites 1006, 1008, and 1009. Pleistocene through middle Miocene sediments recovered from Site 1006, the distal location on the Leg 166 transect, are a mixture of bank-derived and pelagic carbonates with lesser and varying amounts of siliciclastic clays. A thick sequence of Pleistocene periplatform carbonates was recovered near the platform edge at Sites 1008 and 1009. Detailed bulk mineralogic, elemental (Ca, Mg, Sr, and Na), and stable isotopic (d18O and d13C) analyses of sediments are presented from a total of 317 samples from all three sites.
Resumo:
In this paper we present a paleoceanographic reconstruction of the southwestern South Atlantic for the past 13 kyr based on faunal and isotopic analysis of planktonic foraminifera from a high-resolution core retrieved at the South Brazil Bight continental slope. Our record indicates that oceanographic changes in the southwestern South Atlantic during the onset of the Holocene were comparable in strength to those that occurred during the Younger Dryas. Full interglacial conditions started abruptly after 8.2 kyr BP with a sharp change in faunal composition and surface hydrography (SST and SSS). Part of the observed events may be explained in terms of changes in thermohaline circulation while the other part suggests a dominant role of winds. Our data indicate that during the Early Holocene upwelling was significantly strengthened in the South Brazil Bight promoting high productivity and preventing the establishment of the typically interglacial menardiiform species. In general terms, oceanographic changes recorded by core KF02 occurred in synchrony with Antarctica's climate.
Resumo:
Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.
Resumo:
Holes 572C and 573A provide high resolution (about 5000-yr. sampling interval) records of oxygen and carbon isotope stratigraphy (Globigerinoides sacculifera) and carbonate stratigraphy for the Pliocene of the equatorial Pacific. These data enable detailed correlation of carbonate events between sites and provide additional resolution to the previous carbonate stratigraphy. Comparison of calcium carbonate and d18O data reveal a "Pacific-type" carbonate stratigraphy throughout the Pliocene. The d18O data have two modes of variability with a boundary at 2.9 Ma. The planktonic d18O record does not have a steplike enrichment at 3.2 Ma, which is observed in benthic records elsewhere, suggesting that this event does not represent the proposed initiation of northern hemispheric glaciation. Hole 572C does record a distinct d18O enrichment event at about 2.4 Ma, which has been previously associated with the onset of major ice rafting in the North Atlantic.
Resumo:
Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global d13C events such as the PETM and Elmo events. The Elmo d13C Event has been identified in the Arctic Ocean for the first time.