938 resultados para terahertz lasers
Resumo:
Terahertz pulse imaging (TPI) is a novel noncontact, nondestructive technique for the examination of cultural heritage artifacts. It has the advantage of broadband spectral range, time-of-flight depth resolution, and penetration through optically opaque materials. Fiber-coupled, portable, time-domain terahertz systems have enabled this technique to move out of the laboratory and into the field. Much like the rings of a tree, stratified architectural materials give the chronology of their environmental and aesthetic history. This work concentrates on laboratory models of stratified mosaics and fresco paintings, specimens extracted from a neolithic excavation site in Catalhoyuk, Turkey, and specimens measured at the medieval Eglise de Saint Jean-Baptiste in Vif, France. Preparatory spectroscopic studies of various composite materials, including lime, gypsum and clay plasters are presented to enhance the interpretation of results and with the intent to aid future computer simulations of the TPI of stratified architectural material. The breadth of the sample range is a demonstration of the cultural demand and public interest in the life history of buildings. The results are an illustration of the potential role of TPI in providing both a chronological history of buildings and in the visualization of obscured wall paintings and mosaics.
Resumo:
Results are presented of an examination of flow rock-covered Paleoloithic cave art using time-domain terahertz reflectometry.
Resumo:
With advances in technology, terahertz imaging and spectroscopy are beginning to move out of the laboratory and find applications in areas as diverse as security screening, medicine, art conservation and field archaeology. Nevertheless, there is still a need to improve upon the performance of existing terahertz systems to achieve greater compactness and robustness, enhanced spatial resolution, more rapid data acquisition times and operation at greater standoff distances. This chapter will review recent technological developments in this direction that make use of nanostructures in the generation, detection and manipulation of terahertz radiation. The chapter will also explain how terahertz spectroscopy can be used as a tool to characterize the ultrafast carrier dynamics of nanomaterials.
Resumo:
The work presented in this article was performed at the Oriental Institute at the University of Chicago, on objects from their permanent collection: an ancient Egyptian bird mummy and three ancient Sumerian corroded copper-alloy objects. We used a portable, fiber-coupled terahertz time-domain spectroscopic imaging system, which allowed us to measure specimens in both transmission and reflection geometry, and present time- and frequency-based image modes. The results confirm earlier evidence that terahertz imaging can provide complementary information to that obtainable from x-ray CT scans of mummies, giving better visualisation of low density regions. In addition, we demonstrate that terahertz imaging can distinguish mineralized layers in metal artifacts.
Resumo:
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.
Resumo:
Terahertz (THz) radiation is being developed as a tool for the analysis of cultural heritage, and due to recent advances in technology is now available commercially in systems which can be deployed for field analysis. The radiation is capable of penetrating up to one centimetre of wall plaster and is delivered in ultrafast pulses which are reflected from layers within this region. The technique is non-contact, non-invasive and non-destructive. While sub-surface radar is able to penetrate over a metre of wall plaster, producing details of internal structures, infrared and ultraviolet techniques produce information about the surface layers of wall plaster. THz radiation is able to provide information about the interim region of up to approximately one centimetre into the wall surface. Data from Chartres Cathedral, France, Riga Dome Cathedral, Latvia, and Chartreuse du Val de Bénédiction, France is presented each with different research questions. The presence of sub-surface paint layers was expected from documentary evidence, dating to the 13th Century, at Chartres Cathedral. In contrast, at the Riga Dome Cathedral surface painting had been obscured as recently as 1941 during the Russian occupation of Latvia using white lead-based paint. In the 13th Century, wall paintings at the Chapel of the Frescos, Chartreuse du Val de Benediction in Villeneuve les Avignon were constructed using sinopia under-painting on plaster covering uneven stonework.. This paper compares and contrasts the ability of THz radiation to provide information about sub-surface features in churches and Cathedrals across Europe by analysing depth based profiles gained from the reflected signal. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We investigated the effects of photodynamic therapy (PDT) outcome when combining three laser systems that produce light in three different wavelengths (600, 630, and 660 nm). Cooperative as well as independent effects can be observed. We compared the results of the combined wavelengths of light with the effect of single laser for the excitation of the photosensitizer. In the current experiment, the used photosensitizer was Photogem (R) (1.5 mg/kg). Combining two wavelengths for PDT, their cumulative dose and different penetrability may change the overall effect of the fluence of light, which can be effective for increasing the depth of necrosis. This evaluation was performed by comparing the depth and specific aspect of necrosis obtained by using single and dual wavelengths for irradiation of healthy liver of male Wistar rats. We used 15 animals and divided them in five groups of three animals. First, Photogem (R) was administered; follow by measurement of the fluorescence spectrum of the liver before PDT to confirm the level of accumulation of photosensitizer in the tissue. After that, an area of 1 cm(2) of the liver was illuminated using different laser combinations. Qualitative analysis of the necrosis was carried out through histological and morphological study. [GRAPHICS] (a) - microscopic images of rat liver cells, (b) - superficial necrosis caused by PDT using dual-wavelength illumination, (c) - neutrophilic infiltration around the vessel inside the necrosis, and (d) - neutrophilic infiltration around the vessel between necrosis and live tissue (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
Several experiments (time-resolved Z-scan experiments based on pulsed and CW pump lasers, time-resolved divergence diagnostics) have been performed to examine and clarify the question of the converging or diverging population lensing effect occurring in a Cr(3+):Al(2)O(3) ruby laser. The dynamics of the laser far-field divergence of such a laser indeed indicated initially a diverging effect while Z-scan measurements conclude to a converging one. The origin of this discrepancy is thus analysed and elucidated here by introducing the general concept of correlation collapse between the centre and the wings of a laser beam having some clipping. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objectives: the aim of this study was to evaluate in vitro, by scanning electron microscopy (SEM), the adhesion of blood components on root surfaces irradiated with Er:YAG (2.94 mu m) and GaAlAs Diode (808 nm) lasers and the effects on the morphology of irradiated root surfaces.Methods: One hundred samples of human teeth were obtained. They were previously planed and scaled with manual instruments and divided into five groups of 20 samples each: G1 (control group) - absence of treatment; G2 - Er:YAG laser (7.6 J/cm(2)); G3 - Er:YAG laser (12.9 J/cm(2)); G4 - Diode laser (90 J/cm(2)) and G5 - Diode laser (108 J/cm(2)). After these treatments, 10 samples of each group received a blood tissue but the remaining 10 did not. After laboratory treatments, the samples were obtained by SEM, the photomicrographs were analysed by the score of adhesion of blood components and the results were statistically analysed (Kruskall-Wallis and Mann-Whitney test).Results: In relation to the adhesion of blood components, the study showed no significant differences between the control group and the groups treated with Er:YAG laser (p = 0.9633 and 0.6229). Diode laser radiation was less effective than control group and Er:YAG laser radiation (p < 0.01).Conclusion: None of the proposed treatments increased the adhesion of blood components in a significant way when compared to the control group. Although the Er:YAG laser did not interfere in the adhesion of blood components, it caused more changes on the root surface, whereas the Diode laser inhibited the adhesion.
Resumo:
Objective: the ability of the laser irradiation to promote the cleaning and disinfection of the radicular canal system has become this type of treatment in a viable and real alternative in endodontics. The purpose of this study was to evaluate the apical marginal sealing of root canal fillings after the irradiation with the laser of Nd:YAG or of Er:YAG. Materials and Methods: Forty-two human, extracted single-rooted teeth had their crowns sectioned and the root canals prepared with a no. 70 K-file. Then, they were dried and divided into three groups according to canal wall treatment: group 1: the canals were filled with EDTA for 3 min, followed by irrigation with 1% sodium hypochlorite solution; group 2: the canal walls were irradiated with Nd:YAG laser; and group 3: the canal walls were irradiated with Er:YAG laser. Afterwards, the root canals were obturated by the lateral condensation technique. The roots were externally waterproof, except in the apical foramen and immerged in 2% methylene blue aqueous solution during 48 hours. Results: the results showed that the largest infiltrations happened in the group 3-Er:YAG (7.3 mm), proceeded by the group 1-EDTA (1.6 mm) and by the group 2-Nd:YAG (0.6 mm). The group Er:YAG differed statistically of the others (p < 0.05). Conclusion: It was concluded that the Er:YAG laser intracanal irradiation previously to the root canal filling must be used with caution until future research is define the best parameters for it's use.
Resumo:
The aim of this work is to evaluate the effect of surface treatment with Er:YAG and Nd:YAG lasers on resin composite bond strength to recently bleached enamel. In this study, 120 bovine incisors were distributed into two groups: group C: without bleaching treatment; group B: bleached with 35% hydrogen peroxide. Each group was divided into three subgroups: subgroup N: without laser treatment; subgroup Nd: irradiation with Nd:YAG laser; subgroup Er: irradiation with Er:YAG laser. The adhesive system (Adper Single Bond 2) was then applied and composite buildups were constructed with Filtek Supreme composite. The teeth were sectioned to obtain enamel-resin sticks (1 x 1 mm) and submitted to microtensile bond testing. The data were statistically analyzed by the ANOVA and Tukey tests. The bond strength values in the bleached control group (5.57 MPa) presented a significant difference in comparison to the group bleached and irradiated with Er:YAG laser (13.18 MPa) or Nd:YAG (25.67 MPa). The non-bleached control group presented mean values of 30.92 MPa, with statistical difference of all the others groups. The use of Nd:YAG and Er:YAG lasers on bleached specimens was able to improve the bond strengths of them.
Resumo:
Background and Objectives. The adhesion of dental materials is important for the success of treatment. The aim of this study is to evaluate the bond strength of a composite resin applied with a self-etching adhesive system in different dentins after irradiation with Er:YAG and Nd:YAG lasers, observing their morphologic pattern using Scanning Electronic Microscopy (SEM). Materials and Methods. The buccal surface of 72 bovine incisors was worn until exposure of medium depth dentin. The specimens were divided into three groups; GI: normal, GII: demineralized and GIII: hypermineralized dentin. These were also divided into two subgroups; A-irradiated for 30 s with Er:YAG laser in noncontact mode at 40 mJ and 6 Hz and B- irradiated for 30 s with Nd:YAG laser in contact mode at 60 mJ and 10 Hz. The adhesive system Clearfil SE. Bond (Kuraray) and composite resin Tetric Ceram (Vivadent) were applied on the irradiated area by the incremental technique. After storage for 24 h in distilled water at 37 degrees C, the specimens were submitted to the shear strength test in a universal testing machine (EMIC) at a crosshead speed of 1.0 mm/min. Other specimens were made to be analyzed by SEM. Results. The results were statistically analyzed by Analysis of Variance and the Tukey test. Regardless of the type of dentin, the bond strength of specimens irradiated with the Nd:YAG laser (8,94 +/- 2,07) was higher compared to specimens irradiated with the Er:YAG laser (7,03 +/- 2,47); the highest bond strength was obtained for the group of hypermineralized dentin irradiated with the Nd:YAG laser. The SEM analysis showed that the Er:YAG laser caused opening of tubules and the Nd:YAG laser produced areas of fusion as well as regions of opening of dentinal tubules. Conclusions. The dentin showed different morphological patterns and the laser promote alterations on their surfaces, influencing the bond strength of the composite resin. (C) 2010 Laser Institute of America.
Resumo:
Different types of laser have been widely studied for applicability in the oral health area. In the endodontic area, investigations with some types of laser have been conducted to establish safe parameters for clinical application in root canals. However, it has not been duly explained whether the temperature increase caused by laser irradiation could cause alteration in the temperature on the external surface of the root and, consequently, alterations in the cells of the periodontal ligament, causing resorption and even loss of the dental element. The proposal in this paper was to gauge the external root temperature in the apical and cervical regions of the roots of human teeth during root canal irradiation with Nd:yttrium aluminum garnet (YAG) and Er:YAG lasers using different parameters. The novel approach of this paper is the use of the technique of laser applications along the total length of the root canal with series of repetitive irradiation, however, using time of 1 s of irradiation associated with 1 s off to avoid cumulative thermal effects. Experimental results confirm the accuracy of the parameters and exposure regimen obtained. All the parameters used in this paper are acceptable from a clinical as well as a biological point of view. (C) 2009 Laser Institute of America.
Resumo:
Antimony based glasses have been investigated for the first time regarding the possibility of holographic data storage using visible lasers sources. Changes in both refractive index and the absorption coefficient were measured using a holographic setup. The modulation of the optical constants is reversible by heat treatment. Bragg gratings were written under visible light of an Ar laser and erased thermally.
Resumo:
The holographic imaging of rigid objects with diode lasers emitting in many wavelengths in a sillenite Bi12TiO20 photorefractive crystal is both theoretically an experimentally investigated. It is shown that, due to the multi-wavelength emission and the typically large free spectral range of this light source, contour fringes appear on the holographic image corresponding to the surface relief, even in single-exposure recordings. The influence of the number of emitted modes on the fringe width is analysed, and the possible applications of the contour fringes in the field of optical metrology are pointed out.