874 resultados para sustainable organic waste practices
Resumo:
This study analyzes the environmental performance of the Municipal Solid Waste Management System (MSWMS) of Piedade, São Paulo, from a systemic perspective. A life cycle assessment (LCA) technique was applied according to an attributional approach to evaluate both the current operational situation and different prospective scenarios, which were devised based on the application of targets for recycling dry and wet waste suggested by the pre-draft version of the Brazilian Plan for Solid Waste. The life cycle impact assessment method EcoIndicator 99, in association with normalization and weighting procedures, was used to conduct the analysis. It was observed that the adoption of goals of 30%, 50% and 70% for recovering of the recyclable dry waste, resulted in improvement of the environmental performance of the waste management system under analysis, respectively of 10%, 15% and 20%. It was also possible to detect an evolution in the order of 54% in reducing impacts resulting from the adoption of targets for composting. LCA proved to be effective for the evaluation of the environmental performance of MSWMS-Piedade. However, for future evaluations, the attributional approach should be replaced by the methodological practice of substitution to enable the avoided burdens to be considered in estimations of the environmental performance municipal solid waste management systems.
Resumo:
Purpose – The purpose of this paper is to show results from the relationship between green/environmental training and the development of three projects of low-carbon eco-innovations in top Brazilian companies. Design/methodology/approach – This study includes three organizational projects for low-carbon eco-innovations in products (A, B and C) with the objective of reducing their impact on GHG emissions, the so-called low-carbon products. Data were collected from several sources of evidence, including in-depth interviews, document analyses and direct observations. Findings – The authors verified that the environmental training interface for mitigating climate change is relevant for the systematic development of low-carbon products in most of the cases studied. Originality/value – Low-carbon eco-innovations are a trend in the corporate world; however, there is not enough literature and practical evidence on this subject. Thus, this paper adds new evidence to the literature.
Resumo:
The use of bamboo as construction and raw material for producing products can be considered a feasible alternative to the abusive use of steel, concrete and oil byproducts. Its use can also reduce the pressure on the use of wood from native and planted forests. Although there are thousands of bamboo species spread about the world and Brazil itself has hundreds of native species, the use and basic knowledge of its characteristics and applications are still little known and little disseminated. This paper's main objective is to introduce the species, the management phases, the physical and mechanical characteristics and the experiences in using bamboo in design and civil construction as per the Bamboo Project implemented at UNESP, Bauru campus since 1994. The results are divided into: a) Field activities - description of the technological species of interest, production chain flows, types of preservative treatments and clump management practices for the development, adaptation and production of different species of culms; b) Lab experiments - physical and mechanical characterization of culms processed as laminated strips and as composite material (glue laminated bamboo – glubam); c) Uses in projects - experiences with natural bamboo and glubam in design, architecture and civil construction projects. In the final remarks, the study aims to demonstrate, through practical and laboratory results, the material's multi-functionality and the feasibility in using bamboo as a sustainable material.
Resumo:
Cage aquaculture in hydroelectric reservoirs has great potential for expansion in Brazil, but there are concerns of negative environmental impacts. The environmental sustainability of cage culture depends on hamornization between farming practices and the hydrological peculiarities of the site. Mass balance modeling can estimate the amounts of nutrients that can be loaded without triggering eutrophication and resulting maximum allowable production volume. Careful climate zoning can also assist proper siting.
Resumo:
The energy analysis development in this study contributes to the understanding of the dynamics of the organic coffee productive system, in particular to assess the independence of this system with respect to the use of industrialized input products. Thus, it provides information about the sustainability of that production system. Technical itineraries used in this study consist of energy expenditure made with coffee cultivation, according to the type, source and form of energy inputs, agricultural machines, equipment and labor force used in that production system. The energy expenditure, converted into energy units, quantified the input energy. And the organic coffee production, measured in kilograms of processed coffee beans, was the output energy. Primary data used in this study were obtained from organic coffee producers in the Southern region of Minas Gerais State, Brazil, in 2011. Energy balance identified was positive, since the estimated output energy was 626.465 MJ/ha and the energy expenditure was 112.998 MJ/ha, during the useful life of the crop.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the Amazon Basin, within a landscape of infertile soils, fertile Anthrosols of pre-Columbian origin occur (Amazonian Dark Earths or terra preta de Indio). These soils are characterized by high amounts of charred organic matter (black carbon, biochar) and high nutrient stocks. Frequently, they were considered as sign for intensive landscape domestication by way of sedentary agriculture and as sign for large settlements in pre-Columbian Amazonia. Beyond the archaeological interest in Amazonian Dark Earths, they increasingly receive attention because it is assumed that they could serve as a model for sustainable agriculture in the humid tropics (terra preta nova). Both questions lack information about the pre-Columbian practices which were responsible for the genesis of Amazonian Dark Earths. It has often been hypothesized that deposition of faeces could have contributed to the high nutrient stocks in these soils, but no study has focussed on this question yet. We analyzed the biomarkers for faeces 5 beta-stanols as well as their precursors and their 5 alpha-isomers in Amazonian Dark Earths and reference soils to investigate the input of faeces into Amazonian Dark Earths. Using Amazonian Dark Earths as example, we discuss the application of threshold values for specific stanols to evaluate faeces deposition in archaeological soils and demonstrate an alternative approach which is based on a comparison of the concentration patterns of 5 beta-stanols with the concentration patterns of their precursors and their 5 alpha-isomers as well as with local backgrounds. The concentration patterns of sterols show that faeces were deposited on Amazonian Dark Earths. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effects of the organic loading rate (OLR) and pH buffer addition on hydrogen production in two anaerobic fluidized bed reactors (AFBRs) operated simultaneously. The AFBRs were fed with glucose, and expanded clay was used as support material. The reactors were operated at a temperature of 30 degrees C, without the addition of a buffer (AFBR1) and with the addition of a pH buffer (AFBR2, sodium bicarbonate) for OLRs ranging from 19.0 to 140.6 kg COD m(-3) d(-1) (COD: chemical oxygen demand). The maximum hydrogen yields for AFBR1 and AFBR2 were 2.45 and 1.90 mol H-2 mol(-1) glucose (OLR of 84.3 kg COD m(-3) d(-1)), respectively. The highest hydrogen production rates were 0.95 and 0.76 L h(-1) L-1 for AFBR1 and AFBR2 (OLR of 140.6 kg COD m(-3) d(-1)), respectively. The operating conditions in AFBR1 favored the presence of such bacteria as Clostridium, while the bacteria in AFBR2 included Clostridium, Enterobacter, Klebsiella, Veillonellaceae, Chryseobacterium, Sporolactobacillus, and Burkholderiaceae. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
Alternative fuel sources have been extensively studied. Hydrogen gas has gained attention because its combustion releases only water, and it can be produced by microorganisms using organic acids as substrates. The aim of this study was to enrich a microbial consortium of photosynthetic purple non-sulfur bacteria from an Upflow Anaerobic Sludge Blanket reactor (UASB) using malate as carbon source. After the enrichment phase, other carbon sources were tested, such as acetate (30 mmol l(-1)), butyrate (17 mmol l(-1)), citrate (11 mmol l(-1)), lactate (23 mmol l(-1)) and malate (14.5 mmol l(-1)). The reactors were incubated at 30 degrees C under constant illumination by 3 fluorescent lamps (81 mu mol m(-2) s(-1)). The cumulative hydrogen production was 7.8, 9.0, 7.9, 5.6 and 13.9 mmol H-2 l(-1) culture for acetate, butyrate, citrate, lactate and malate, respectively. The maximum hydrogen yield was 0.6, 1.4, 0.7, 0.5 and 0.9 mmol H-2 mmol(-1) substrate for acetate, butyrate, citrate, lactate and malate, respectively. The consumption of substrates was 43% for acetate, 37% for butyrate, 100% for citrate, 49% for lactate and 100% for malate. Approximately 26% of the clones obtained from the Phototrophic Hydrogen-Producing Bacterial Consortium (PHPBC) were similar to Rhodobacter, Rhodospirillum and Rhodopseudomonas, which have been widely cited in studies of photobiological hydrogen production. Clones similar to the genus Sulfurospirillum (29% of the total) were also found in the microbial consortium. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Organic agriculture is a sustainable cultivation ecologically, economically and socially. Several researches in organic agriculture have been made from technical perspectives, economic traits or related to ecological aspects. There are practically no investigations into the nature of the technology used in organic agriculture, especially from an ergonomic perspective. From the activity analysis, this study aimed to map the technology used in the production of organic vegetables. Properties producing organic vegetables were selected representing the State of Sao Paulo. It was applied an instrument (questionnaire and semi-structured interview) with their managers and it was made visual records to identify adaptations, innovations and technological demands that simultaneously minimize the workload and the difficulties in performing the tasks and increase work productivity. For some of the technological innovations a digital scanner was used to generate a virtual solid model to facilitate its redesign and virtual prototyping. The main results show that organic farmers have little technology in product form. The main innovations that enable competitive advantage or allow higher labor productivity occur in the form of processes, organization and marketing.
Resumo:
This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.
Resumo:
CHARACTERIZATION OF REGOSOLS IN THE SEMIARID REGION OF PERNAMBUCO, BRAZIL Studies on soil characterization in unexplored regions, besides the generation of data banks for the soil classes of the country, also produce scientific information about soil properties, important for the development of good management practices and sustainable land use. One of the main soil classes in the semiarid region of Pernambuco State, the Regosols, cover about 27 % of the state area, and are used mainly for family agriculture. Due to different geological and climatic aspects Regosols with different chemical, physical and mineralogical properties are found in Pernambuco, which were characterized for the semiarid region of the State. Five Regosol profiles were selected in different regions of the State (P1=Sao Caetano; P2=Lagoa do Ouro; P3=Caetes; P4=Sao Joao; P5=Parnamirim). The soils were morphologically characterized and samples collected from all horizons and the bedrock. Routine physical and chemical analyses were carried out for soil classification of all samples and mineralogical analyses of the coarse fractions (gravel and sand) by optical microscopy and of the silt and clay fractions by X ray diffraction (XRD), as well as petrographic analyses of the rock samples. The results showed similarities between the soils, with a low degree of pedogenetic development, varying from medium to very deep, with the horizon sequence A-AC-C-Cr and a sandy to sandy loam texture. In the deeper layers of two profiles (P1 and P5), a solodic character was observed. Organic matter and available phosphorus content were low in all studied soils. Despite the low levels of exchangeable cations, all soil profiles showed high base saturation. The mineralogical composition of gravel, sand and silt fractions consisted, essentially, of quartz, followed by feldspars and mica, supporting the results of the petrographic analysis of the bedrock. Kaolinite was the main clay mineral in all studied profiles and horizons, indicating an important monosialitization process in autochthonous soils of a typical semiarid region. In soil profile P2, at a lower landscape position, smectite minerals were observed, with mixing phases of montmorillonite, beidelite or nontronite, indentified by the Greene-Kelly test in the DRX analysis.
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
[EN]Until recently, sample preparation was carried out using traditional techniques, such as liquid–liquid extraction (LLE), that use large volumes of organic solvents. Solid-phase extraction (SPE) uses much less solvent than LLE, although the volume can still be significant. These preparation methods are expensive, time-consuming and environmentally unfriendly. Recently, a great effort has been made to develop new analytical methodologies able to perform direct analyses using miniaturised equipment, thereby achieving high enrichment factors, minimising solvent consumption and reducing waste. These microextraction techniques improve the performance during sample preparation, particularly in complex water environmental samples, such as wastewaters, surface and ground waters, tap waters, sea and river waters. Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) and time-of-flight mass spectrometric (TOF/MS) techniques can be used when analysing a broad range of organic micropollutants. Before separating and detecting these compounds in environmental samples, the target analytes must be extracted and pre-concentrated to make them detectable. In this work, we review the most recent applications of microextraction preparation techniques in different water environmental matrices to determine organic micropollutants: solid-phase microextraction SPME, in-tube solid-phase microextraction (IT-SPME), stir bar sorptive extraction (SBSE) and liquid-phase microextraction (LPME). Several groups of compounds are considered organic micropollutants because these are being released continuously into the environment. Many of these compounds are considered emerging contaminants. These analytes are generally compounds that are not covered by the existing regulations and are now detected more frequently in different environmental compartments. Pharmaceuticals, surfactants, personal care products and other chemicals are considered micropollutants. These compounds must be monitored because, although they are detected in low concentrations, they might be harmful toward ecosystems.